2.已知{an}為等差數(shù)列,S7=28,S11=66,則a5=( 。
A.3B.4C.5D.6

分析 利用等差數(shù)列的求和公式與通項公式即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,∵S7=28,S11=66,
∴7a1+$\frac{7×6}{2}d$=28,11a1+$\frac{11×10}{2}$d=66,
解得a1=d=1.
則a5=1+(5-1)=5.
故選:C.

點評 本題考查了等差數(shù)列的求和公式與通項公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在y=($\frac{1}{2}$)x,y=$\sqrt{x}$,y=x2,y=x${\;}^{\frac{2}{3}}$四個函數(shù)中,當(dāng)0<x1<x2<1時,使f($\frac{{x}_{1}+{x}_{2}}{2}$)>$\frac{f({x}_{1})+f({x}_{2})}{2}$恒成立的函數(shù)個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)滿足:
①對任意實數(shù)m,n都有f(m+n)+f(m-n)=2f(m)?f(n);
②對任意m∈R,都有f(1+m)=f(1-m)恒成立;
③f(x)不恒為0,且當(dāng)0<x<1時,f(x)<1.
(1)求f(0),f(1)的值;
(2)判斷函數(shù)f(x)的奇偶性,并給出你的證明;
(3)定義:“若存在非零常數(shù)T,使得對函數(shù)g(x)定義域中的任意一個x,均有g(shù)(x+T)=g(x),則稱g(x)為以T為周期的周期函數(shù)”.試證明:函數(shù)f(x)為周期函數(shù),并求出$f(\frac{1}{3})+f(\frac{2}{3})+f(\frac{3}{3})+…+f(\frac{2017}{3})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知拋物線y2=2px(p>0)的焦點為F,圓M的圓心在拋物線上且經(jīng)過坐標(biāo)原點O和點F,若圓M的半徑為3,則拋物線方程為( 。
A.y2=4xB.y2=6xC.y2=8xD.y2=16x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.“α為第二象限角”是“$\frac{α}{2}$為銳角”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在某次綜合素質(zhì)測試中,共設(shè)有40個考室,每個考室30名考生.在考試結(jié)束后,統(tǒng)計了他們的成績,得到如圖所示的頻率分布直方圖.這40個考生成績的眾數(shù)77.5,中位數(shù)77.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x2+2ax+3,x∈[-2,2]
(1)當(dāng)a=-1時,求函數(shù)f(x)的最大值和最小值;
(2)記f(x)在區(qū)間[-2,2]上的最小值為g(a),求g(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列命題中不正確的個數(shù)是( 。
①小于90°的角是銳角;
②終邊不同的角的同名三角函數(shù)值不等;
③若sinα>0,則α是第一、二象限角;
④若α是第二象限的角,且P(x,y)是其終邊上的一點,則cosα=$\frac{-x}{{\sqrt{{x^2}+{y^2}}}}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如果扇形圓心角的弧度數(shù)為2,圓心角所對的弦長也為2,那么這個扇形的面積是$\frac{1}{si{n}^{2}1}$.

查看答案和解析>>

同步練習(xí)冊答案