【題目】高三學(xué)生為了迎接高考,要經(jīng)常進(jìn)行模擬考試,鍛煉應(yīng)試能力,某學(xué)生從升入高三到高考要參加10次模擬考試,下面是高三第一學(xué)期某學(xué)生參加5次模擬考試的數(shù)學(xué)成績(jī)表:
模擬考試第x次 | 1 | 2 | 3 | 4 | 5 |
考試成績(jī)y分 | 90 | 100 | 105 | 105 | 100 |
(1)已知該考生的模擬考試成績(jī)y與模擬考試的次數(shù)x滿足回歸直線方程,若高考看作第11次模擬考試,試估計(jì)該考生的高考數(shù)學(xué)成績(jī);
(2)把這5次模擬考試的數(shù)學(xué)成績(jī)單放在5個(gè)相同的信封中,從中隨機(jī)抽取3份試卷的成績(jī)單進(jìn)行研究,設(shè)抽取考試成績(jī)不等于平均值的個(gè)數(shù)為,求出的分布列與數(shù)學(xué)期望.
參考公式:.
【答案】(1)120分, (2)分布列見解析,期望為
【解析】
(1)計(jì)算出和的值,然后將表格中的數(shù)據(jù)代入最小二乘法公式求出和的值,可求出回歸直線方程,然后將代入回歸直線方程計(jì)算即可;
(2)由5次模擬考試的數(shù)學(xué)成績(jī)有次與平均成績(jī)一致,即可得隨機(jī)變量的所有可能取值為1,2,3,分別計(jì)算出概率,列出分布列求出數(shù)學(xué)期望.
(1)由表可知,,
,
,
則,
,
故回歸直線方程為.
當(dāng)時(shí),,
所以估計(jì)該考生的高考數(shù)學(xué)成績(jī)?yōu)?/span>120分.
(2)由題可知隨機(jī)變量的所有可能取值為1,2,3,
則;
;
,
故隨機(jī)變量的分布列為:
1 | 2 | 3 | |
P |
隨機(jī)變量的數(shù)學(xué)期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在上的單調(diào)遞增區(qū)間;
(2)將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,再將圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象.求證:存在無(wú)窮多個(gè)互不相同的整數(shù),使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),分別是橢圓的左頂點(diǎn)和上頂點(diǎn),為其右焦點(diǎn),,且該橢圓的離心率為;
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)為橢圓上的一動(dòng)點(diǎn),且不與橢圓頂點(diǎn)重合,點(diǎn)為直線與軸的交點(diǎn),線段的中垂線與軸交于點(diǎn),若直線斜率為,直線的斜率為,且(為坐標(biāo)原點(diǎn)),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一青蛙從點(diǎn)開始依次水平向右和豎直向上跳動(dòng),其落點(diǎn)坐標(biāo)依次是,(如圖,的坐標(biāo)以已知條件為準(zhǔn)),表示青蛙從點(diǎn)到點(diǎn)所經(jīng)過(guò)的路程.
(1)點(diǎn)為拋物線準(zhǔn)線上一點(diǎn),點(diǎn),均在該拋物線上,并且直線經(jīng)過(guò)該拋物線的焦點(diǎn),證明;
(2)若點(diǎn)要么落在所表示的曲線上,要么落在所表示的曲線上,并且,試寫出(不需證明);
(3)若點(diǎn)要么落在所表示的曲線上,要么落在所表示的曲線上,并且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知離心率為的橢圓的左頂點(diǎn)為A,且橢圓E經(jīng)過(guò)與坐標(biāo)軸不垂直的直線l與橢圓E交于C,D兩點(diǎn),且直線AC和直線AD的斜率之積為.
(I)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)求證:直線l過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),下列說(shuō)法正確的是__________.的值域是;當(dāng)時(shí),方程有兩個(gè)不等實(shí)根;若函數(shù)有三個(gè)零點(diǎn)時(shí),則;經(jīng)過(guò)有三條直線與相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】日照一中為了落實(shí)“陽(yáng)光運(yùn)動(dòng)一小時(shí)”活動(dòng),計(jì)劃在一塊直角三角形ABC的空地上修建一個(gè)占地面積為S的矩形AMPN健身場(chǎng)地.如圖,點(diǎn)M在AC上,點(diǎn)N在AB上,且P點(diǎn)在斜邊BC上,已知∠ACB=60°且|AC|=30米,|AM|=x米,x∈[10,20].
(1)試用x表示S,并求S的取值范圍;
(2)若在矩形AMPN以外(陰影部分)鋪上草坪.已知:矩形AMPN健身場(chǎng)地每平方米的造價(jià)為,草坪的每平方米的造價(jià)為(k為正常數(shù)).設(shè)總造價(jià)T關(guān)于S的函數(shù)為T=f(S),試問(wèn):如何選取|AM|的長(zhǎng),才能使總造價(jià)T最低.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(文科)已知四棱錐的底面ABCD為直角梯形,,,,為正三角形.
(1)點(diǎn)M為棱AB上一點(diǎn),若平面SDM,,求實(shí)數(shù)λ的值;
(2)若,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一塊平行四邊形綠地,經(jīng)測(cè)量百米,百米,,擬過(guò)線段上一點(diǎn)設(shè)計(jì)一條直路(點(diǎn)在四邊形的邊上,不計(jì)路的寬度),將綠地分成兩部分,且右邊面積是左邊面積的3倍,設(shè)百米,百米.
(1)當(dāng)點(diǎn)與點(diǎn)重合時(shí),試確定點(diǎn)的位置;
(2)試求的值,使路的長(zhǎng)度最短.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com