【題目】某校高二理科8班共有50名學(xué)生參加學(xué)業(yè)水平模擬考試,成績(jī)(單位:分,滿分100分)大于或等于90分的為優(yōu)秀,其中語(yǔ)文成績(jī)近似服從正態(tài)分布,數(shù)學(xué)成績(jī)的頻率分布直方圖如圖.
(I)這50名學(xué)生中本次考試語(yǔ)文、數(shù)學(xué)成績(jī)優(yōu)秀的大約各有多少人?
(Ⅱ)如果語(yǔ)文和數(shù)學(xué)兩科成績(jī)都優(yōu)秀的共有4人,從語(yǔ)文優(yōu)秀或數(shù)學(xué)優(yōu)秀的這些同學(xué)中隨機(jī)抽取3人,設(shè)3人中兩科都優(yōu)秀的有人,求的分布列和數(shù)學(xué)期望;
(Ⅲ)根據(jù)(I)(Ⅱ)的數(shù)據(jù),是否有99%以上的把握認(rèn)為語(yǔ)文成績(jī)優(yōu)秀的同學(xué),數(shù)學(xué)成績(jī)也優(yōu)秀?
附:①若~,則,;
②;
③
【答案】(Ⅰ) 語(yǔ)文成績(jī)優(yōu)秀的同學(xué)有8人,數(shù)學(xué)成績(jī)優(yōu)秀的同學(xué)有10人. (Ⅱ)見(jiàn)解析.( Ⅲ) 沒(méi)有99%以上的把握認(rèn)為語(yǔ)文成績(jī)優(yōu)秀的同學(xué),數(shù)學(xué)成績(jī)也優(yōu)秀.
【解析】
(I)語(yǔ)文成績(jī)服從正態(tài)分布,根據(jù)正態(tài)分布的 原則可得語(yǔ)文成績(jī)優(yōu)秀的概率及人數(shù);根據(jù)數(shù)學(xué)成績(jī)的頻率分布直方圖可以計(jì)算數(shù)學(xué)成績(jī)優(yōu)秀的概率及人數(shù);(Ⅱ)語(yǔ)文和數(shù)學(xué)兩科成績(jī)都優(yōu)秀的共有4人,則語(yǔ)文單科優(yōu)秀的4人,數(shù)學(xué)單科優(yōu)秀的6人,即單科優(yōu)秀的共10人,隨機(jī)抽取3人,3人中兩科都優(yōu)秀的可能為0、1、2、3四種情況,服從超幾何分布,利用概率公式分別求出每種情況的概率,即可寫出X的分布列及數(shù)學(xué)期望;(Ⅲ)先填寫列聯(lián)表,利用公式求出 的值比較它與6.635的大小即可。
(Ⅰ)∵語(yǔ)文成績(jī)服從正態(tài)分布,
∴語(yǔ)文成績(jī)優(yōu)秀的概率為,
數(shù)學(xué)成績(jī)優(yōu)秀的概率為,
∴語(yǔ)文成績(jī)優(yōu)秀的同學(xué)有人,
數(shù)學(xué)成績(jī)優(yōu)秀的同學(xué)有人.
(Ⅱ)語(yǔ)文數(shù)學(xué)兩科都優(yōu)秀的有4人,單科優(yōu)秀的有10人,
的所有可能取值為0,1,2,3,
,,
,,
∴的分布列為:
.
(Ⅲ)列聯(lián)表:
∴.
∴沒(méi)有99%以上的把握認(rèn)為語(yǔ)文成績(jī)優(yōu)秀的同學(xué),數(shù)學(xué)成績(jī)也優(yōu)秀.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在三棱錐中,與都是邊長(zhǎng)為2的等邊三角形,是側(cè)棱的中點(diǎn),過(guò)點(diǎn)作平行于、的平面分別交棱、、于點(diǎn)、、.
(1)證明:四邊形為矩形;
(2)若平面平面,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中,,為的零點(diǎn):且恒成立,在區(qū)間上有最小值無(wú)最大值,則的最大值是( )
A. 11B. 13C. 15D. 17
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱柱的底面為菱形,底面,,,,分別為,的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求證:平面平面;
(Ⅲ)若,求異面直線與所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)工廠在某年連續(xù)10個(gè)月每月產(chǎn)品的總成本y(萬(wàn)元)與該月產(chǎn)量x(萬(wàn)件)之間有如下一組數(shù)據(jù):
x | 1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 |
y | 2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通過(guò)畫散點(diǎn)圖,發(fā)現(xiàn)可用線性回歸模型擬合y與x的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;
(2)①建立月總成本y與月產(chǎn)量x之間的回歸方程;
②通過(guò)建立的y關(guān)于x的回歸方程,估計(jì)某月產(chǎn)量為1.98萬(wàn)件時(shí),此時(shí)產(chǎn)品的總成本為多少萬(wàn)元?
(均精確到0.001)
附注:①參考數(shù)據(jù):,
,
②參考公式:相關(guān)系數(shù),
回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是梯形,四邊形是矩形,且平面平面,,,是線段上的動(dòng)點(diǎn).
(1)試確定點(diǎn)的位置,使平面,并說(shuō)明理由;
(2)在(1)的條件下,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】武漢市攝影協(xié)會(huì)準(zhǔn)備在2020年1月舉辦主題為“我們都是追夢(mèng)人”攝影圖片展,通過(guò)平常人的鏡頭記錄國(guó)強(qiáng)民富的幸福生活,攝影協(xié)會(huì)收到了來(lái)自社會(huì)各界的大量作品,打算從眾多照片中選取100張照片展出,其參賽者年齡集中在之間,根據(jù)統(tǒng)計(jì)結(jié)果,做出頻率分布直方圖如圖:
(1)求頻率直方圖中的值,并根據(jù)頻率直方圖,求這100位攝影者年齡的中位數(shù);
(2)為了展示不同年齡作者眼中的幸福生活,攝影協(xié)會(huì)按照分層抽樣的方法,計(jì)劃從這100件照片中抽出20個(gè)最佳作品,并邀請(qǐng)相應(yīng)作者參加“講述照片背后的故事”座談會(huì).
①在答題卡上的統(tǒng)計(jì)表中填出每組相應(yīng)抽取的人數(shù):
年齡 | |||||
人數(shù) |
②若從年齡在的作者中選出2人把這些圖片和故事整理成冊(cè),求這2人中至少有1人的年齡在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足:a1+a2+a3+…+an=n-an,(n=1,2,3,…)
(Ⅰ)求證:數(shù)列{an-1}是等比數(shù)列;
(Ⅱ)令bn=(2-n)(an-1)(n=1,2,3,…),如果對(duì)任意n∈N*,都有bn+t≤t2,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線;
(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com