【題目】如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,MDABCD,NBABCD.且MDNB1.則下列結(jié)論中:

MCAN

DB∥平面AMN

③平面CMN⊥平面AMN

④平面DCM∥平面ABN

所有假命題的個(gè)數(shù)是(  

A.0B.1C.2D.3

【答案】B

【解析】

由題可知該幾何體的頂點(diǎn)均在邊長(zhǎng)為1的正方體的頂點(diǎn)上,再根據(jù)線面平行與垂直以及面面垂直平行的判定逐個(gè)判斷即可.

由題畫(huà)出該幾何體外接的正方體.

對(duì)①,因?yàn)?/span>,,MCAN成立.故①正確.

對(duì)②,因?yàn)?/span>平面AMN,DB∥平面AMN成立.故②正確.

對(duì)③,連接易得為正四面體.故平面CMN⊥平面AMN不成立.故③錯(cuò)誤.

對(duì)④,正方體中平面DCM與平面ABN分別為前后兩面,故④正確.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線的焦點(diǎn)F為圓C的圓心.

求拋物線的方程與其準(zhǔn)線方程;

直線l與圓C相切,交拋物線于AB兩點(diǎn);

若線段AB中點(diǎn)的縱坐標(biāo)為,求直線l的方程;

的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且橢圓C過(guò)點(diǎn)

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)過(guò)橢圓C的右焦點(diǎn)的直線l與橢圓C交于A、B兩點(diǎn),且與圓:交于EF兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】5分)《九章算術(shù)》竹九節(jié)問(wèn)題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則第五節(jié)的容積為( )

A. 1B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將正方形沿對(duì)角線折起,當(dāng)以四點(diǎn)為頂點(diǎn)的三棱錐體積最大時(shí),異面直線 所成的角為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)若不過(guò)原點(diǎn)的直線與橢圓相交于兩點(diǎn),與直線相交于點(diǎn),且是線段的中點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在幾何體中,底面為菱形,,相交于點(diǎn),四邊形為直角梯形,,面.

(1)證明:面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合.

(1)若的充分條件,求的取值范圍.

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,分別為棱的中點(diǎn).

1)在上確定點(diǎn)M,使平面,并說(shuō)明理由。

2)若側(cè)面側(cè)面,求直線與平面所成角的正弦值。

查看答案和解析>>

同步練習(xí)冊(cè)答案