【題目】如圖,圓:.
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知,圓與x軸相交于兩點(點在點的左側(cè)).過點任作一條直線與圓:相交于兩點A,B.問:是否存在實數(shù)a,使得=?若存在,求出實數(shù)a的值,若不存在,請說明理由.
【答案】(1);(2).
【解析】
試題分析:(1)聯(lián)立直線與圓的方程,利用判別式為0得出值,即得圓的方程;(2)先求出,聯(lián)立直線與圓的方程,利用根與系數(shù)的關(guān)系進行求解.
解題思路: 直線圓的位置關(guān)系,主要涉及直線與圓相切、相交、相離,在解決直線圓的位置關(guān)系時,要注意結(jié)合初中平面幾何中的直線與圓的知識..
試題解析:(Ⅰ)因為
得,
由題意得,所以
故所求圓C的方程為.
(Ⅱ)令,得,
即
所以
假設(shè)存在實數(shù),
當(dāng)直線AB與軸不垂直時,設(shè)直線AB的方程為,
代入得,,
設(shè)從而
因為
而
因為,所以,即,得.
當(dāng)直線AB與軸垂直時,也成立.
故存在,使得.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O為內(nèi)一點,若分別滿足①;②;③;④(其中為中,角所對的邊).則O依次是的( )
A.內(nèi)心、重心、垂心、外心B.外心、垂心、重心、內(nèi)心
C.外心、內(nèi)心、重心、垂心D.內(nèi)心、垂心、外心、重心
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】意大利著名數(shù)學(xué)家斐波那契在研究兔子的繁殖問題時,發(fā)現(xiàn)有這樣的一列數(shù):1,1,2,3,5,8,…,該數(shù)列的特點是:前兩個數(shù)均為1,從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和.人們把這樣的一列數(shù)組成的數(shù)列稱為斐波那契數(shù)列. 并將數(shù)列中的各項除以4所得余數(shù)按原順序構(gòu)成的數(shù)列記為,則下列結(jié)論正確的是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某貧困地區(qū)截至2018年底,按照農(nóng)村家庭人均年純收入8000元的小康標(biāo)準(zhǔn),該地區(qū)僅剩部分家庭尚未實現(xiàn)小康.現(xiàn)從這些尚未實現(xiàn)小康的家庭中隨機抽取50戶,得到這50戶家庭2018年的家庭人均年純收入的頻率分布直方圖.
(1)補全頻率分布直方圖,并求出這50戶家庭人均年純收入的中位數(shù)和平均數(shù)(精確到元);
(2)2019年7月,為估計該地能否在2020年全面實現(xiàn)小康,統(tǒng)計了該地當(dāng)時最貧困的一個家庭2019年1至6月的人均月純收入如表:
月份/2019(時間代碼) | 1 | 2 | 3 | 4 | 5 | 6 |
人居月純收入 (元) | 275 | 365 | 415 | 450 | 470 | 485 |
由散點圖及相關(guān)性分析發(fā)現(xiàn):家庭人均月純收入與時間代碼之間具有較強的線性相關(guān)關(guān)系,請求出回歸直線方程;并由此估計該家庭2020年1月的家庭人均月純收入.
①可能用到的數(shù)據(jù):;
②參考公式:線性回歸方程中,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABEF和四邊形ABCD均是直角梯形,∠FAB=∠DAB=90°,二面角FABD是直二面角,BE∥AF,BC∥AD,AF=AB=BC=2,AD=1.
(1)證明:在平面BCE上,一定存在過點C的直線l與直線DF平行;
(2)求二面角FCDA的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電力公司在工程招標(biāo)中是根據(jù)技術(shù)、商務(wù)、報價三項評分標(biāo)準(zhǔn)進行綜合評分的,按照綜合得分的高低進行綜合排序,綜合排序高者中標(biāo)。分值權(quán)重表如下:
總分 | 技術(shù) | 商務(wù) | 報價 |
100% | 50% | 10% | 40% |
技術(shù)標(biāo)、商務(wù)標(biāo)基本都是由公司的技術(shù)、資質(zhì)、資信等實力來決定的。報價表則相對靈活,報價標(biāo)的評分方法是:基準(zhǔn)價的基準(zhǔn)分是68分,若報價每高于基準(zhǔn)價1%,則在基準(zhǔn)分的基礎(chǔ)上扣0.8分,最低得分48分;若報價每低于基準(zhǔn)價1%,則在基準(zhǔn)分的基礎(chǔ)上加0.8分,最高得分為80分。若報價低于基準(zhǔn)價15%以上(不含15%)每再低1%,在80分在基礎(chǔ)上扣0.8分。在某次招標(biāo)中,若基準(zhǔn)價為1000(萬元)。甲、乙兩公司綜合得分如下表:
公司 | 技術(shù) | 商務(wù) | 報價 |
甲 | 80分 | 90分 | 分 |
乙 | 70分 | 100分 | 分 |
甲公司報價為1100(萬元),乙公司的報價為800(萬元)則甲,乙公司的綜合得分,分別是
A. 73,75.4 B. 73,80 C. 74.6,76 D. 74.6 ,75.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】意大利數(shù)學(xué)家列昂納多·斐波那契是第一個研究了印度和阿拉伯?dāng)?shù)學(xué)理論的歐洲人,斐波那契數(shù)列被譽為是最美的數(shù)列,斐波那契數(shù)列滿足:,,.若將數(shù)列的每一項按照下圖方法放進格子里,每一小格子的邊長為1,記前項所占的格子的面積之和為,每段螺旋線與其所在的正方形所圍成的扇形面積為,則下列結(jié)論正確的是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是圓O的直徑,C是圓O上一點,AC=BC,且PA⊥平面ABC,E是AC的中點,F是PB的中點,PA=,AB=2.求:
(Ⅰ)異面直線EF與BC所成的角;
(Ⅱ)點A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中裝有除顏色外其他均相同的編號為a,b的兩個黑球和編號為c,d,e的三個紅球,從中任意摸出兩個球.
(1)求恰好摸出1個黑球和1個紅球的概率:
(2)求至少摸出1個黑球的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com