在△ABC中,若sin2A=sin2B+sin2C,且sinA=2sinBcosC,判斷△ABC形狀.
考點(diǎn):正弦定理
專題:解三角形
分析:由sin2A=sin2B+sin2C,可得△ABC為直角三角形.再由 sinA=2sinBcosC,可得sin(B-C)=0,B=C,由此可得△ABC為等腰三角形.
解答: 解:在△ABC中,∵sin2A=sin2B+sin2C,
∴a2=b2+c2,故△ABC為直角三角形.
再由 sinA=2sinBcosC,
可得 sin(B+C)=2sinBcosC,
即 sinBcosC+cosBsinC=2sinBcosC,
∴sin(B-C)=0,
∴B=C,
故△ABC為等腰三角形.
綜上,△ABC為等腰直角三角形.
點(diǎn)評(píng):本題主要考查正弦定理、兩角和的正弦公式的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
.
a
,
.
b
不共線,
.
AB
=2
.
a
+p
.
b
.
BC
=
.
a
+
.
b
,
.
CD
=
.
a
-2
.
b
,若A,B,D三點(diǎn)共線,則實(shí)數(shù)p的值是( 。
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)P(2,0)作圓O:x2+y2=1的兩條切線,切點(diǎn)分別為A和B,則弦長(zhǎng)|AB|=( 。
A、
3
B、
2
C、2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,a1=64,公比q≠1,a2,a3,a4又分別是某等差數(shù)列的第7項(xiàng)、第3項(xiàng)和第1項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an,求數(shù)列{|bn|}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1:mx+8y+n=0,直線l2:2x+my-1=0,l1∥l2,兩平行直線間距離為
5
,而過(guò)點(diǎn)A(m,n)(m>0,n>0)的直線l被l1、l2截得的線段長(zhǎng)為
10
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)x2+2y2=1時(shí),求2x+3y2的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=3,計(jì)算:
(1)
4sinα-2cosα
5cosα+3sinα
;
(2)cos2α-3sinαcosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的最小正周期為
3
,最小值為-2,圖象過(guò)(
9
,0),求:
(1)該函數(shù)的解析式;
(2)若x∈[0,
π
3
],求f(x)的值域;
(3)若x∈[0,
π
3
],且g(x)=f(x)-a有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線x2-2y2=4的兩條準(zhǔn)線間的距離為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案