已知函數(shù)f:R+→R滿足:對任意x,y∈R+,都有f(x)f(y)=f(xy)+2006(
1
x
+
1
y
+2005)
,則所有滿足條件的函數(shù)f為
 
考點:抽象函數(shù)及其應用
專題:函數(shù)的性質(zhì)及應用
分析:利用賦值法,令x=y=1,求得f(1)=2007,或f(1)=-2006,再令令y=1,則f(x)•f(1)=f(x)+2006(
1
x
+2006),然后代入f(1)即可,
解答: 解:令x=y=1,
則f(1)•f(1)=f(1)+2006×2007
解得f(1)=2007,或f(1)=-2006,
再令y=1,
則f(x)•f(1)=f(x)+2006(
1
x
+2006),
∴2007f(x)-f(x)=2006(
1
x
+2006),或-2006f(x)-f(x)=2006(
1
x
+2006),
∴f(x)=
1
x
+2006,或f(x)=-
2006
2007
1
x
+2006)
故答案為:f(x)=
1
x
+2006,f(x)=-
2006
2007
1
x
+2006)
點評:本題主要考查了抽象函數(shù)的解析式的求法,關鍵利用賦值法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的公差d≠0,首項a1=3,且a1、a4、a13成等比數(shù)列,設數(shù)列{an}的前n項和為Sn(n∈N+).
(1)求an和Sn;
(2)若bn=
an(n≤4且n∈N+)
1
Sn
(n≥5且n∈N+)
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平行六面體ABCD-A1B1C1D1中,AB=3,AD=2,AA1=1,∠BAD=∠BAA1=∠DAA1=
π
3
,則AC1的長度為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知邊長為a的菱形ABCD中,∠BAD=60°,將此菱形沿對角線BD折成120°角,則A,C兩點間的距離是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
ax(x>0)
(2-a)x+
2
3
a(x≤0)
在R上為增函數(shù),則a的取值范圍是
 
(用區(qū)間表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,正方體ABCD-A′B′C′D′的棱長為1,E、F 分別是棱AA′,CC′的中點,過直線E、F的平面分別與棱BB′,DD′交于M、N,設BM=x,x∈[0,1],給出以下四個命題:
①當且僅當x=0時,四邊形MENF的周長最大;
②當且僅當x=
1
2
時,四邊形MENF的面積最小;
③四棱錐C′-MENF的體積V=h(x)為常函數(shù);
④正方體ABCD-A′B′C′D′被截面MENF平分成等體積的兩個多面體.
以上命題中正確的命題是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C的圓心是雙曲線x2-
y2
3
=1的右焦點,且與雙曲線的漸近線相切,則該圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在R上的奇函數(shù),且f(2)=0,當x>0時,有xf′(x)-f(x)>0恒成立,則不等式x2•f(x)>0的解集為( 。
A、(-2,2)
B、(-∞,-2)∪(2,+∞)
C、(-2,0)∪(2,+∞)
D、(-∞,-2)∪(0,2)

查看答案和解析>>

同步練習冊答案