對某校小學(xué)生進行心理障礙測試得到如下的列聯(lián)表:
有心理障礙沒有心理障礙總計
女生10
 
30
男生
 
7080
總計20
 
110
將表格填寫完整,試說明心理障礙與性別是否有關(guān)?
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k)0.150.100.050.0250.0100.0050.001
K2.0722.0763.8415.0246.6357.87910.828
考點:獨立性檢驗的應(yīng)用
專題:計算題,概率與統(tǒng)計
分析:由列聯(lián)表中的數(shù)據(jù)求出K2的觀測值,結(jié)合臨界值表的答案.
解答: 解:2×2的列聯(lián)表
有心理障礙沒有心理障礙總計
女生102030
男生107080
總計2090110
K2的觀測值k=
110×(700-200)2
30×80×20×90
≈6.366>5.024,
所以有99%的把握說明心理障礙與性別有關(guān)系.
點評:本題考查了獨立性檢驗,考查了學(xué)生的計算能力,是基礎(chǔ)的計算題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,點A(0,3),直線l:y=2x-4,設(shè)圓C的半徑為1,圓心在直線l上.
(Ⅰ)若圓心C也在直線y=x-1上,過點A作圓C的切線,求切線的方程;
(Ⅱ)若圓C上存在唯一一點M,使MA=2MO,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖所示算法:
(1)指出該算法表示的功能;
(2)畫出算法框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:ABCD是平行四邊形,AP⊥平面ABCD,BE∥AP,AB=AP=2,BE=BC=1,∠CBA=60°
(1)求證:EC∥平面PAD;
(2)求證:平面PAC⊥平面EBC;
(3)求直線PC與平面PABE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=alnx,f(x)=x3+x2+bx.
(1)若f(x)在區(qū)間[1,2]上不是單調(diào)函數(shù),求實數(shù)b的范圍;
(2)若對任意x∈[1,e],都有g(shù)(x)≥-x2+(a+2)x恒成立,求實數(shù)a的取值范圍;
(3)當(dāng)b=0時,設(shè)F(x)=
f(-x),x<1
g(x),x≥1
,對任意給定的正實數(shù)a,曲線y=F(x)上是否存在兩點P,Q,使得△POQ是以O(shè)(O為坐標(biāo)原點)為直角頂點的直角三角形,而且此三角形斜邊中點在y軸上?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,直角梯形PBCD,PD∥BC,∠D=90°,PD=9,BC=3,CD=4,點A在PD上,且PA=2AD,將△PAB沿AB折到△SAB的位置,使SB⊥BC.

(Ⅰ)求證:SA⊥AD;
(Ⅱ)點E在SD上,且
SE
=
1
3
SD
,求二面角S-AC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
2x
1+2x
的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

3個人坐在一排6個座位上,問:
(Ⅰ)3個人都相鄰的坐法有多少種?
(Ⅱ)空位都不相鄰的坐法有多少種?
(Ⅲ)空位至少有2個相鄰的坐法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過橢圓
x2
25
+
y2
16
=1的左焦點F1作垂直于x軸的直線AB,交橢圓于A,B兩點,F(xiàn)2為橢圓的右焦點,則△AF2B的周長為
 

查看答案和解析>>

同步練習(xí)冊答案