【題目】一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積等于______
【答案】4
【解析】由三視圖知,這個(gè)幾何體的結(jié)構(gòu)特征是一個(gè)四棱錐,底面ABCD是直角梯形,AD//BC,AD=2,BC=4,AB=2, ,側(cè)棱SA底面ABCD,且SA=2,則體積為,故填4.
點(diǎn)睛: 思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長(zhǎng)對(duì)正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長(zhǎng)是幾何體的長(zhǎng);俯視圖的長(zhǎng)是幾何體的長(zhǎng),寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫(huà)出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫(huà)出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫(huà)出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (是常數(shù)),
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),函數(shù)有零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若曲線與曲線在公共點(diǎn)處有共同的切線,求實(shí)數(shù)的值;
(Ⅱ)在(Ⅰ)的條件下,試問(wèn)函數(shù)是否有零點(diǎn)?如果有,求出該零點(diǎn);若沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),五邊形中, .如圖(2),將沿折到的位置,得到四棱錐.點(diǎn)為線段的中點(diǎn),且平面.
(1)求證:平面平面;
(2)若直線與所成角的正切值為,設(shè),求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng),時(shí),證明:(其中為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程和直線的傾斜角;
(2)設(shè)點(diǎn),直線和曲線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)在橢圓上, 為橢圓的右焦點(diǎn), 分別為橢圓的左,右兩個(gè)頂點(diǎn).若過(guò)點(diǎn)且斜率不為0的直線與橢圓交于兩點(diǎn),且線段的斜率之積為.
(1)求橢圓的方程;
(2)已知直線與相交于點(diǎn),證明: 三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小店每天以每份5元的價(jià)格從食品廠購(gòu)進(jìn)若干份食品,然后以每份10元的價(jià)格出售.如果當(dāng)天賣(mài)不完,剩下的食品還可以每份1元的價(jià)格退回食品廠處理.
(Ⅰ)若小店一天購(gòu)進(jìn)16份,求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天需求量(單位:份,)的函數(shù)解析式;
(Ⅱ)小店記錄了100天這種食品的日需求量(單位:份),整理得下表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)小店一天購(gòu)進(jìn)16份這種食品,表示當(dāng)天的利潤(rùn)(單位:元),求的分布列及數(shù)學(xué)期望;
(ii)以小店當(dāng)天利潤(rùn)的期望值為決策依據(jù),你認(rèn)為一天應(yīng)購(gòu)進(jìn)食品16份還是17份?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)有兩個(gè)極值點(diǎn),,且.
()求的取值范圍,并討論的單調(diào)性.
()證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com