【題目】設某三棱錐的三視圖如圖所示,則該三棱錐外接球的表面積為(
A.4π
B.6π
C.8π
D.10π

【答案】C
【解析】解:根據(jù)三視圖作出棱錐的直觀圖如圖所示, 由三視圖可知底面ABC是等腰直角三角形,AB⊥BC,AC=2,PA⊥平面ABC,PA=2.
∴PC= =2 ,
取AC的中點D,PC的中點O,連結OD,BD,OB,則OD∥PA,OD= PA=1,BD= AC=1,
∴OD⊥平面ABC,∴OA=OC=OP= PC= ,OB=
∴OA=OB=OC=OP= ,
即三棱錐的外接球球心為O,半徑為
∴外接球的面積S=4π×( 2=8π.
故選C.

【考點精析】本題主要考查了由三視圖求面積、體積的相關知識點,需要掌握求體積的關鍵是求出底面積和高;求全面積的關鍵是求出各個側面的面積才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某公司制定了一個激勵銷售人員的獎勵方案:當銷售利潤不超過8萬元時,按銷售利潤的15%進行獎勵;當銷售利潤超過8萬元時,若超出A萬元,則超出部分按log5(2A+1)進行獎勵.記獎金為y(單位:萬元),銷售利潤為x(單位:萬元).
(1)寫出獎金y關于銷售利潤x的關系式;
(2)如果業(yè)務員小江獲得3.2萬元的獎金,那么他的銷售利潤是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市環(huán)保局空氣質量監(jiān)控過程中,每隔x天作為一個統(tǒng)計周期.最近x天統(tǒng)計數(shù)據(jù)如表

空氣污染指數(shù)
(單位:μg/m3

[0,50]

(50,100]

(100,150]

(150,200]

天數(shù)

15

40

35

y

(Ⅰ)根據(jù)所給統(tǒng)計表和頻率分布直方圖中的信息求出x,y的值,并完成頻率分布直方圖;
(Ⅱ)為了創(chuàng)生態(tài)城市,該市提出要保證每個統(tǒng)計周期“空氣污染指數(shù)大于150μg/m3的天數(shù)占比不超過15%,平均空氣污染指數(shù)小于100μg/m3”,請問該統(tǒng)計周期有沒有達到預期目標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在海岸A處,發(fā)現(xiàn)北偏東45°方向,距A處( ﹣1)海里的B處有一艘走私船,在A處北偏西75°方向,距A處2海里的C處的緝私船奉命以10 海里/小時的速度追截走私船,此時走私船正以10海里/小時的速度從B處向北偏東30°的方向逃竄,問緝私船沿什么方向能最快追上走私船,并求出所需要的時間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠的污水處理程序如下:原始污水必先經(jīng)過A系統(tǒng)處理,處理后的污水(A級水)達到環(huán)保標準(簡稱達標)的概率為.經(jīng)化驗檢測,若確認達標便可直接排放;若不達標則必須進行B系統(tǒng)處理后直接排放.

某廠現(xiàn)有個標準水量的A級水池,分別取樣、檢測. 多個污水樣本檢測時,既可以逐個化驗,也可以將若干個樣本混合在一起化驗.混合樣本中只要有樣本不達標,則混合樣本的化驗結果必不達標.若混合樣本不達標,則該組中各個樣本必須再逐個化驗;若混合樣本達標,則原水池的污水直接排放.

現(xiàn)有以下四種方案,

方案一:逐個化驗;

方案二:平均分成兩組化驗;

方案三:三個樣本混在一起化驗,剩下的一個單獨化驗;

方案四:混在一起化驗.

化驗次數(shù)的期望值越小,則方案的越“優(yōu)”.

(Ⅰ) 若,求個A級水樣本混合化驗結果不達標的概率;

(Ⅱ) 若,現(xiàn)有個A級水樣本需要化驗,請問:方案一,二,四中哪個最“優(yōu)”?

(Ⅲ) 若“方案三”比“方案四”更“優(yōu)”,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:,,,,

(Ⅰ)求圖中的值;

(Ⅱ)根據(jù)頻率分布直方圖,估計這100名學生語文成績的平均分;

(Ⅲ)若這100名學生語文成績某些分數(shù)段的人數(shù)()與數(shù)學成績相應分數(shù)段的人數(shù)()之比如表所示,求數(shù)學成績在之外的人數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.
(1)求證:D1C⊥AC1;
(2)設E是DC上一點,試確定E的位置,使D1E∥平面A1BD,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) , .

(1)若存在極值點1,求的值;

(2)若存在兩個不同的零點,求證: 為自然對數(shù)的底數(shù), ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下四個命題中:
①為了了解800名學生對學校某項教改試驗的意見,打算從中抽取一個容量為40的樣本,考慮用系統(tǒng)抽樣,則分段的間隔k為40.
②線性回歸直線方程 恒過樣本中心( , ),且至少過一個樣本點;
③在某項測量中,測量結果ξ服從正態(tài)分布N(2,σ2)(σ>0).若ξ在(﹣∞,1)內取值的概率為0.1,則ξ在(2,3)內取值的概率為0.4;
其中真命題的個數(shù)為(
A.0
B.1
C.2
D.3

查看答案和解析>>

同步練習冊答案