【題目】以下四個命題中:
①為了了解800名學(xué)生對學(xué)校某項(xiàng)教改試驗(yàn)的意見,打算從中抽取一個容量為40的樣本,考慮用系統(tǒng)抽樣,則分段的間隔k為40.
②線性回歸直線方程 恒過樣本中心( , ),且至少過一個樣本點(diǎn);
③在某項(xiàng)測量中,測量結(jié)果ξ服從正態(tài)分布N(2,σ2)(σ>0).若ξ在(﹣∞,1)內(nèi)取值的概率為0.1,則ξ在(2,3)內(nèi)取值的概率為0.4;
其中真命題的個數(shù)為( )
A.0
B.1
C.2
D.3
【答案】B
【解析】解:①由題意知本題是一個系統(tǒng)抽樣,總體中個體數(shù)是800,樣本容量是40,根據(jù)系統(tǒng)抽樣的步驟,得到分段的間隔K= =20,故①是假命題;
②線性回歸直線方程 恒過樣本中心( , ),但不一定過樣本點(diǎn),故②是假命題;
③由于ξ服從正態(tài)分布N(2,σ2)(σ>0),則正態(tài)分布圖象的對稱軸為x=2,
故ξ在(﹣∞,2)內(nèi)取值的概率為0.5,
又由ξ在(﹣∞,1)內(nèi)取值的概率為0.1,則ξ在(1,2)內(nèi)取值的概率為0.4
故ξ在(2,3)內(nèi)取值的概率為0.4,故③是真命題;
故選:B
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABCD中,E,F(xiàn)分別是BC,DC的中點(diǎn),G為交點(diǎn),若 = , = ,試以 , 為基底表示 、 、 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】渝州集團(tuán)對所有員工進(jìn)行了職業(yè)技能測試從甲、乙兩部門中各任選10名員工的測試成績(單位:分)數(shù)據(jù)的莖葉圖如圖所示.
(1)若公司決定測試成績高于85分的員工獲得“職業(yè)技能好能手”稱號,求從這20名員工中任選三人,其中恰有兩人獲得“職業(yè)技能好能手”的概率;
(2)公司結(jié)合這次測試成績對員工的績效獎金進(jìn)行調(diào)整(績效獎金方案如下表),若以甲部門這10人的樣本數(shù)據(jù)來估計(jì)該部門總體數(shù)據(jù),且以頻率估計(jì)概率,從甲部門所有員工中任選3名員工,記績效獎金不小于的人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①若f(x)=ax2+(2a+b)x+2(其中x∈[﹣1,a])是偶函數(shù),則實(shí)數(shù)b=﹣2;
②f(x)= + 既是奇函數(shù)又是偶函數(shù);
③若f(x+2)= ,當(dāng)x∈(0,2)時,f(x)=2x , 則f(2015)=2;
④已知f(x)是定義在R上的不恒為零的函數(shù),且對任意的x,y∈R都滿足f(xy)=xf(y)+yf(x),則f(x)是奇函數(shù).其中所有正確命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】10名同學(xué)參加投籃比賽,每人投20球,投中的次數(shù)用莖葉圖表示(如圖),設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有( )
A.a>b>c
B.b>c>a
C.c>a>b
D.c>b>a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)教師對所任教的兩個班級各抽取20名學(xué)生進(jìn)行測試,分?jǐn)?shù)分布如表:
分?jǐn)?shù)區(qū)間 | 甲班頻率 | 乙班頻率 |
[0,30) | 0.1 | 0.2 |
[30,60) | 0.2 | 0.2 |
[60,90) | 0.3 | 0.3 |
[90,120) | 0.2 | 0.2 |
[120,150) | 0.2 | 0.1 |
(Ⅰ)若成績120分以上(含120分)為優(yōu)秀,求從乙班參加測試的90分以上(含90分)的同學(xué)中,隨機(jī)任取2名同學(xué),恰有1人為優(yōu)秀的概率;
(Ⅱ)根據(jù)以上數(shù)據(jù)完成下面的2×2列聯(lián)表:在犯錯概率小于0.1的前提下,你是否有足夠的把握認(rèn)為學(xué)生的數(shù)學(xué)成績是否優(yōu)秀與班級有關(guān)系?
優(yōu)秀 | 不優(yōu)秀 | 總計(jì) | |
甲班 | |||
乙班 | |||
總計(jì) |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
,其中n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若直線與曲線的交點(diǎn)的橫坐標(biāo)為,且,求整數(shù)所有可能的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A={0,1,2,4},B={ ,0,1,2,6,8},則下列對應(yīng)關(guān)系能構(gòu)成A到B的映射的是( )
A.f:x→x3﹣1
B.f:x→(x﹣1)2
C.f:x→2x﹣1
D.f:x→2x
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com