【題目】已知二項式( ﹣ )n展開式中的各項系數的絕對值之和為128.
(1)求展開式中系數最大的項;
(2)求展開式中所有的有理項.
【答案】
(1)解:二項式( ﹣ )n展開式中的各項系數的絕對值之和為128,
即為各項二項式系數之和為128,即2n=128得n=7,
則二項式( ﹣ )7展開式的通項為(﹣1)rC7r ,
∵C73=C74=35,
∴當r=4時,展開式中系數最大,
∴展開式中系數最大的項為35x﹣3,
(2)解:當 為整數時,即r=7,4,1
∴展開式中所有的有理項(﹣1)7C77x﹣7=﹣x﹣7,或35x﹣3,﹣7x
【解析】(1)二項式( ﹣ )n展開式中的各項系數的絕對值之和為128,即為各項二項式系數之和為128,即2n=128,解得即可,當r=4時,展開式中系數最大(2)考慮通項公式中,x的指數為3的倍數的情況,即可得到個數
科目:高中數學 來源: 題型:
【題目】甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為 與p,且乙投球2次均未命中的概率為 .
(1)求乙投球的命中率p;
(2)若甲投球1次,乙投球2次,兩人共命中的次數記為ξ,求ξ的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解某班學生喜愛打籃球是否與性別有關,對本班人進行了問卷調查得到了如下的列聯表:已知在全部人中隨機抽取人,抽到喜愛打籃球的學生的概率為.
(1)請將上面的列聯表補充完整(不用寫計算過程);并求出:有多大把握認為喜愛打籃球與性別有關,說明你的理由;
(2)若從該班不喜愛打籃球的男生中隨機抽取3人調查,求其中某男生甲被選到的概率。下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5. 024 | 6.635 | 7.879 | 10.828 |
(參考公式: ,其中)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知曲線C1的參數方程為 (φ為參數).以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=4 cosθ.
(1)求C1與C2交點的直角坐標;
(2)已知曲線C3的參數方程為 (0≤α<π,t為參數,且t≠0),C3與C1相交于點P,C2與C3相交于點Q,且|PQ|=8,求α的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2016年某市為了促進生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設置了相應的垃圾箱.為調查居民生活垃圾分類投放情況,現隨機抽取了該市三類垃圾箱中總計60噸廚余垃圾,假設廚余垃圾在“廚余垃圾”箱、“可回收物”箱和“其他垃圾”箱的投放量分別為x,y,z,其中x>0,x+y+z=60,則數據x,y,z的標準差的最大值為 . (注:方差 ,其中 為x1 , x2 , …,xn的平均數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某產品的歷史收益率的頻率分布直方圖如圖所示.
(1)試估計該產品收益率的中位數;
(2)若該產品的售價(元)與銷量(萬份)之間有較強線性相關關系,從歷史銷售記錄中抽樣得到如表5組與的對應數據:
售價(元) | 25 | 30 | 38 | 45 | 52 |
銷量(萬份) | 7.5 | 7.1 | 6.0 | 5.6 | 4.8 |
根據表中數據算出關于的線性回歸方程為,求的值;
(3)若從表中五組銷量數據中隨機抽取兩組,記其中銷量超過6萬份的組數為,求的分布列及期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數,f(x)在[0,+∞)上是增函數,且f( )=0,則不等式f( )>0的解集為( )
A.(0, )∪(2,+∞)
B.( ,1)∪(2,+∞)??
C.(0, )
D.(2,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)=ax2+bx+3在x=2時取得最小值,且函數f(x)的圖象在x軸上截得的線段長為2.
(1)求函數f(x)的解析式;
(2)若函數g(x)=f(x)﹣mx的一個零點在區(qū)間(0,2)上,另一個零點在區(qū)間(2,3)上,求實數m的取值范圍.
(3)當x∈[t,t+1]時,函數f(x)的最小值為﹣ ,求實數t的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com