【題目】已知函數(shù)f(x)滿足f(x)=f( )且當(dāng)x∈[ ,1]時(shí),f(x)=lnx,若當(dāng)x∈[ ]時(shí),函數(shù)g(x)=f(x)﹣ax與x軸有交點(diǎn),則實(shí)數(shù)a的取值范圍是(
A.[﹣ ,0]
B.[﹣πl(wèi)nπ,0]
C.[﹣ , ]
D.[﹣ ,﹣ ]

【答案】B
【解析】解:設(shè)x∈[1,π], 則 ∈[ ,1],
因?yàn)閒(x)=f( )且當(dāng)x∈[ ,1]時(shí),
f(x)=lnx,
所以f(x)=f( )=ln =﹣lnx,
則f(x)=
在坐標(biāo)系中畫出函數(shù)f(x)的圖象如圖:
因?yàn)楹瘮?shù)g(x)=f(x)﹣ax與x軸有交點(diǎn),
所以直線y=ax與函數(shù)f(x)的圖象有交點(diǎn),
由圖得,直線y=ax與y=f(x)的圖象相交于點(diǎn)( ,﹣lnπ),
即有﹣lnπ= ,解得a=﹣πl(wèi)nπ.
由圖象可得,實(shí)數(shù)a的取值范圍是:[﹣πl(wèi)nπ,0]
故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線 C1 =1( a>0,b>0),圓 C2:x2+y2﹣2ax+ a2=0,若雙曲線C1 的一條漸近線與圓 C2 有兩個(gè)不同的交點(diǎn),則雙曲線 C1 的離心率的范圍是(
A.(1,
B.( ,+∞)
C.(1,2)
D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,雙曲線的中心在坐標(biāo)原點(diǎn)O,M、N分別為雙曲線虛軸的上、下端點(diǎn),A是雙曲線的右頂點(diǎn),F(xiàn)是雙曲線的右焦點(diǎn),直線AM與FN相交于點(diǎn)P,若∠APF是銳角,則此雙曲線的離心率的取值范圍是(
A.( ,+∞)
B.(1+ ,+∞)
C.(0,
D.( ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間[0,1]上單調(diào)遞增的是(
A.y=cosx
B.y=﹣x2
C.
D.y=|sinx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 上的動(dòng)點(diǎn)P與其頂點(diǎn) , 不重合. (Ⅰ)求證:直線PA與PB的斜率乘積為定值;
(Ⅱ)設(shè)點(diǎn)M,N在橢圓C上,O為坐標(biāo)原點(diǎn),當(dāng)OM∥PA,ON∥PB時(shí),求△OMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:四棱錐P﹣ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD= ,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng).
(1)證明:無(wú)論點(diǎn)E在BC邊的何處,都有PE⊥AF;
(2)當(dāng)BE等于何值時(shí),PA與平面PDE所成角的大小為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)xOy中,直線l的參數(shù)方程為{ (t為參數(shù))在以O(shè)為極點(diǎn).x軸正半軸為極軸的極坐標(biāo)系中.曲線C的極坐標(biāo)方程為ρ=4sinθ﹣2cosθ. (I)求直線l的普通方程與曲線C的直角坐標(biāo)方程:
(Ⅱ)若直線l與y軸的交點(diǎn)為P,直線l與曲線C的交點(diǎn)為A,B,求|PA||PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等差數(shù)列{an}前n項(xiàng)和為Sn , 且S5=45,S6=60.
(1)求{an}的通項(xiàng)公式an;
(2)若數(shù)列{an}滿足bn+1﹣bn=an(n∈N*)且b1=3,求{ }的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè){an}是公比為q的等比數(shù)列.
(Ⅰ)試推導(dǎo){an}的前n項(xiàng)和公式;
(Ⅱ) 設(shè)q≠1,證明數(shù)列{an+1}不是等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案