【題目】定義在區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),如果,使得,則稱(chēng)為區(qū)間[a,b]上的中值點(diǎn)”.

下列函數(shù):①;中,在區(qū)間[0,1]中值點(diǎn)多于一個(gè)的函數(shù)序號(hào)為_________.(寫(xiě)出所有滿(mǎn)足條件的函數(shù)的序號(hào))

【答案】①④

【解析】分析由題意知“中值點(diǎn)”的意義是指在區(qū)間[0,1]上存在點(diǎn),使得函數(shù)在該點(diǎn)處的切線的斜率等于區(qū)間[0,1]的兩個(gè)端點(diǎn)連線的斜率.分別畫(huà)出四個(gè)函數(shù)的圖象,由此定義對(duì)四個(gè)函數(shù)逐個(gè)判斷可得答案

詳解由題意得“中值點(diǎn)”的意義是在區(qū)間[0,1]上存在點(diǎn),使得函數(shù)在該點(diǎn)的切線的斜率等于區(qū)間[0,1]的兩個(gè)端點(diǎn)連線的斜率

在同一坐標(biāo)系中畫(huà)出四個(gè)函數(shù)的圖象(如下圖)

對(duì)于,根據(jù)題意,在區(qū)間[0,1]上的任何一點(diǎn)都是“中值點(diǎn)”,故正確;

對(duì)于,區(qū)間[0,1]兩端點(diǎn)連線的斜率即點(diǎn)(0,1)(1,1)連線的斜率為0.,,因此函數(shù)在區(qū)間[0,1]只存在一個(gè)“中值點(diǎn)”,故不正確;

對(duì)于,由題意得區(qū)間[0,1]兩端點(diǎn)連線的斜率為ln2,,由于只有一個(gè)解,所以函數(shù)f(x)=ln(x+1)在區(qū)間[0,1]只存在一個(gè)“中值點(diǎn)”,故不正確;

對(duì)于④同理并結(jié)合對(duì)稱(chēng)性,可得函數(shù)在區(qū)間[0,1]存在兩個(gè)“中值點(diǎn)”,故正確

綜上可得①④正確

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)慶假期是實(shí)施免收小型客車(chē)高速通行費(fèi)的重大節(jié)假日,有一個(gè)群名為天狼星的自駕游車(chē)隊(duì),該車(chē)隊(duì)是由31輛身長(zhǎng)約為(以計(jì)算)的同一車(chē)型組成,行程中經(jīng)過(guò)一個(gè)長(zhǎng)為2725的隧道(通過(guò)隧道的車(chē)速不超過(guò)),勻速通過(guò)該隧道,設(shè)車(chē)隊(duì)的速度為,根據(jù)安全和車(chē)流的需要,當(dāng)時(shí),相鄰兩車(chē)之間保持的距離當(dāng)時(shí)相鄰兩車(chē)之間保持的距離自第一輛車(chē)車(chē)頭進(jìn)入隧道至第31輛車(chē)車(chē)尾離開(kāi)隧道所用的時(shí)間

(1)將表示成為的函數(shù)

(2)求該車(chē)隊(duì)通過(guò)隧道時(shí)間的最小值及此時(shí)車(chē)隊(duì)的速度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}是公差不為0的等差數(shù)列,首項(xiàng)a1=1,且a1 , a2 , a4成等比數(shù)列. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}滿(mǎn)足bn=an+2 ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,.

(1)求的極值;

(2) 函數(shù)有兩個(gè)極值點(diǎn),,若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了解高三年級(jí)學(xué)生寒假期間的學(xué)習(xí)情況,抽取甲、乙兩班,調(diào)查這兩個(gè)班的學(xué)生在寒假期間每天平均學(xué)習(xí)的時(shí)間(單位:小時(shí)),統(tǒng)計(jì)結(jié)果繪成頻率分別直方圖(如圖).已知甲、乙兩班學(xué)生人數(shù)相同,甲班學(xué)生每天平均學(xué)習(xí)時(shí)間在區(qū)間的有8人.

I)求直方圖中的值及甲班學(xué)生每天平均學(xué)習(xí)時(shí)間在區(qū)間的人數(shù);

II)從甲、乙兩個(gè)班每天平均學(xué)習(xí)時(shí)間大于10個(gè)小時(shí)的學(xué)生中任取4人參加測(cè)試,設(shè)4人中甲班學(xué)生的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列{an},{bn}中,a1=2,b1=4且an , bn , an+1成等差數(shù)列,bn , an+1 , bn+1成等比數(shù)列(n∈N*
(1)求a2 , a3 , a4及b2 , b3 , b4;由此歸納出{an},{bn}的通項(xiàng)公式,并證明你的結(jié)論.
(2)若cn=log2),Sn=c1+c2+…+cn , 試問(wèn)是否存在正整數(shù)m,使Sm≥5,若存在,求最小的正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x),g(x)的定義域都是D,直線x=x0(x0∈D),與y=f(x),y=g(x)的圖象分別交于A,B兩點(diǎn),若|AB|的值是不等于0的常數(shù),則稱(chēng)曲線y=f(x),y=g(x)為“平行曲線”,設(shè)f(x)=ex-alnx+c(a>0,c≠0),且y=f(x),y=g(x)為區(qū)間(0,+)的“平行曲線”,g(1)=e,g(x)在區(qū)間(2,3)上的零點(diǎn)唯一,則a的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=-a2 lnx+x2-ax(a∈R).

(1)試討論函數(shù)f(x)的單調(diào)性:

(2)若函數(shù)f(x)在區(qū)間(1,e)中有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C ,直線l

(Ⅰ)求直線l所過(guò)定點(diǎn)A的坐標(biāo);

(Ⅱ)求直線l被圓C所截得的弦長(zhǎng)最短時(shí)m的值及最短弦長(zhǎng);

(Ⅲ)已知點(diǎn),在直線MC上(C為圓心),存在定點(diǎn)N(異于點(diǎn)M),滿(mǎn)足:對(duì)于圓C上任一點(diǎn)P,都有為一常數(shù),試求所有滿(mǎn)足條件的點(diǎn)N的坐標(biāo)及該常數(shù)。

查看答案和解析>>

同步練習(xí)冊(cè)答案