【題目】已知數(shù)列{bn}滿足bn=| |,其中a1=2,an+1= .
(1)求b1 , b2 , b3 , 并猜想bn的表達(dá)式(不必寫出證明過程);
(2)由(1)寫出數(shù)列{bn}的前n項和Sn , 并用數(shù)學(xué)歸納法證明.
【答案】
(1)解:∵a1=2,an+1= ,∴ , ,
又bn=| |,得b1=4,b2=8,b3=16,
猜想:
(2)解:由(1)可得,數(shù)列{bn}是以4為首項,2為公比的等比數(shù)列,
則有 .
證明:當(dāng)n=1時, 成立;
假設(shè)當(dāng)n=k時,有 ,
則當(dāng)n=k+1時, =2k+3﹣4=2(k+1)+2﹣4.
綜上, 成立
【解析】(1)由已知結(jié)合數(shù)列遞推式求得b1 , b2 , b3 , 并猜想bn的表達(dá)式;(2)由等比數(shù)列的前n項和公式求得數(shù)列{bn}的前n項和Sn , 并用數(shù)學(xué)歸納法證明.
【考點精析】關(guān)于本題考查的數(shù)列的前n項和和數(shù)學(xué)歸納法的定義,需要了解數(shù)列{an}的前n項和sn與通項an的關(guān)系;數(shù)學(xué)歸納法是證明關(guān)于正整數(shù)n的命題的一種方法才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體ABCD﹣A1B1C1D1中,E是CD上一點,AB=AD=3,AA1=2,CE=1,P是AA1上一點,且DP∥平面AEB1 , F是棱DD1與平面BEP的交點,則DF的長為( )
A.1
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)甲、乙兩種產(chǎn)品每噸所需的煤、電和產(chǎn)值如下表所示.
用煤(噸) | 用電(千瓦) | 產(chǎn)值(萬元) | |
甲產(chǎn)品 | 3 | 50 | 12 |
乙產(chǎn)品 | 7 | 20 | 8 |
但國家每天分配給該廠的煤、電有限,每天供煤至多47噸,供電至多300千瓦,問該廠如何安排生產(chǎn),使得該廠日產(chǎn)值最大?最大日產(chǎn)值為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)投資1千萬元用于一個高科技項目,每年可獲利25%.由于企業(yè)間競爭激烈,每年底需要從利潤中取出資金200萬元進(jìn)行科研、技術(shù)改造與廣告投入,方能保持原有的利潤增長率.經(jīng)過多少年后,該項目的資金可以達(dá)到4倍的目標(biāo)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且a1=1,Sn+1﹣2Sn=1(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=n+ ,求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高中生共有2700人,其中高一年級900人,高二年級1200人,高三年級600人,現(xiàn)采取分層抽樣法抽取容量為135的樣本,那么高一,高二,高三各年級抽取的人數(shù)分別為( )
A.45,75,15
B.45,45,45
C.30,90,15
D.45,60,30
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=2sin( )(﹣2<x<10)的圖象與x軸交于點A,過點A的直線l與函數(shù)的圖象交于B、C兩點,則( + ) =( )
A.﹣32
B.﹣16
C.16
D.32
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的各項都是正數(shù),且對任意n∈N* , 都有(an﹣1)(an+3)=4Sn , 其中Sn為數(shù)列{an}的前n項和.
(1)求證數(shù)列{an}是等差數(shù)列;
(2)若數(shù)列{ }的前n項和為Tn , 求Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com