已知tanθ=-3求:
(1)
sinθ+2cosθ
cosθ-3sinθ
;
(2)sin2θ-sinθ•cosθ的值.
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:(1)由條件利用同角三角函數(shù)的基本關(guān)系把要求的式子化為
tanθ+2
1-3tanθ
從而求得結(jié)果.
(2)由條件利用同角三角函數(shù)的基本關(guān)系把要求的式子化為
tan2θ-tanθ
tan2θ+1
從而求得結(jié)果.
解答: 解:(1)原式=
tanθ+2
1-3tanθ
=
-3+2
1-3×(-3)
=-
1
10

(2)原式=
sin2θ-sinθcosθ
1
=
sin2θ-sinθcosθ
sin2θ+cos2θ
=
tan2θ-tanθ
tan2θ+1
=
(-3)2-(-3)
(-3)2+1
=
9+3
9+1
=
6
5
點(diǎn)評:本題主要考察同角三角函數(shù)基本關(guān)系的運(yùn)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3-x2-x+1的圖象上有兩點(diǎn)A(0,1)和B(1,0)
(Ⅰ)在區(qū)間(0,1)內(nèi),求實(shí)數(shù)a使得函數(shù)f(x)的圖象在x=a處的切線平行于直線AB;
(Ⅱ)設(shè)m>0,記M(m,f(m)),求證在區(qū)間(0,m)內(nèi)至少有一實(shí)數(shù)b,使得函數(shù)圖象在x=b處的切線平行于直線AM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

全集U=R,集合A={x|4≤x<5},B={x|k+1<x≤2k-1},若A∩B=∅,求整數(shù)k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

tan70°cos10°(1-
3
tan20°)的值為( 。
A、-1B、1C、-2D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x<
1
3
,則
1-6x+9x2
等于(  )
A、3x-1
B、1-3x
C、(1-3x)2
D、非以上答案

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x|x2-2x-3=0},B={x|ax-1=0}.若A∪B=A,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各式中,值為正數(shù)的是( 。
A、cos2-sin2
B、tan3•cos2
C、sin2•tan2
D、cos2•sin2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某沿海地區(qū)養(yǎng)殖的一種特色海鮮上市時間僅能持續(xù)5個月,預(yù)測上市初期和廂期會因供應(yīng)不足使價格呈持續(xù)上漲態(tài)勢,而中期又將出現(xiàn)供大于求使價格連續(xù)下跌.現(xiàn)有三種價格模擬函數(shù):①f(x)=p.qx;②f(x)=px2+qx+1;③f(x)=x(x-q)2+p(以上三式中p,q均為常數(shù),且q>l).
(1)為準(zhǔn)確研究其價格走勢,應(yīng)選哪種價格模擬函數(shù)(不必說明理由);
(2)若f(0)=4,f(2)=6,求出所選函數(shù)f(x)的解析式(注:函數(shù)定義域是[0,5].其中x=0表示8月1日,x=l表示9月1日,…,以此類推);
(3)在(2)的條件下研究下面課題:為保證養(yǎng)殖戶的經(jīng)濟(jì)效益,當(dāng)?shù)卣?jì)劃在價格下跌期間積極拓寬外銷,請你預(yù)測該海鮮將在哪幾個月份內(nèi)價格下跌.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ),(A,ω,φ)為常數(shù),A>0,ω>0)的部分圖象如圖所示,
(1)求f(x)的解析式; 
(2)當(dāng)x∈[0,
π
2
]時,函數(shù)F(x)=f(x)-m存在零點(diǎn),求實(shí)數(shù)m的范圍.

查看答案和解析>>

同步練習(xí)冊答案