【題目】如圖1,梯形中,,過分別作,,垂足分別為、.,,已知,將梯形沿,同側折起,得空間幾何體,如圖2.
(1)若,證明:平面;
(2)在(1)的條件下,若,求二面角的余弦值.
【答案】(1)見解析;(2)
【解析】
(1)先證平面,得到,結合,可證得平面;
(2)以,,分別為軸,軸,軸的正方向建立空間直角坐標系,求出面ADF與面ACF的法向量,利用夾角公式,求出兩法向量夾角的余弦值,由圖可知二面角為銳角,則它的余弦值為正值,即可得到本題答案.
(1)由已知得四邊形是正方形,且邊長為2,
在圖2中,,由已知得,,∴平面,
又平面,∴,又,,∴平面.
(2)在圖2中,由(1)知,,兩兩垂直,
以為坐標原點,以,,分別為軸,軸,軸的正方向建立空間直角坐標系,
則,,,,
,,.設平面的一個法向量為,
由得,不妨取,得,
設平面的一個法向量為,
由得,取,得,
.
由圖可得,二面角為銳角,所以它的余弦值為
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,,求的值域;
(2)當時,求的最小值;
(3)是否存在實數(shù)、,同時滿足下列條件:① ;② 當的定義域為時,其值域為.若存在,求出、的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,平面 平面,四邊形為正方形,△為等邊三角形,是中點,平面與棱交于點.
(Ⅰ)求證:;
(Ⅱ)求證:平面;
(III)記四棱錐的體積為,四棱錐的體積為,直接寫出的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著科學技術的飛速發(fā)展,網(wǎng)絡也已經(jīng)逐漸融入了人們的日常生活,網(wǎng)購作為一種新的消費方式,因其具有快捷、商品種類齊全、性價比高等優(yōu)勢而深受廣大消費者認可.某網(wǎng)購公司統(tǒng)計了近五年在本公司網(wǎng)購的人數(shù),得到如下的相關數(shù)據(jù)(其中“x=1”表示2015年,“x=2”表示2016年,依次類推;y表示人數(shù)):
x | 1 | 2 | 3 | 4 | 5 |
y(萬人) | 20 | 50 | 100 | 150 | 180 |
(1)試根據(jù)表中的數(shù)據(jù),求出y關于x的線性回歸方程,并預測到哪一年該公司的網(wǎng)購人數(shù)能超過300萬人;
(2)該公司為了吸引網(wǎng)購者,特別推出“玩網(wǎng)絡游戲,送免費購物券”活動,網(wǎng)購者可根據(jù)拋擲骰子的結果,操控微型遙控車在方格圖上行進. 若遙控車最終停在“勝利大本營”,則網(wǎng)購者可獲得免費購物券500元;若遙控車最終停在“失敗大本營”,則網(wǎng)購者可獲得免費購物券200元. 已知骰子出現(xiàn)奇數(shù)與偶數(shù)的概率都是,方格圖上標有第0格、第1格、第2格、…、第20格。遙控車開始在第0格,網(wǎng)購者每拋擲一次骰子,遙控車向前移動一次.若擲出奇數(shù),遙控車向前移動一格(從到)若擲出偶數(shù)遙控車向前移動兩格(從到),直到遙控車移到第19格勝利大本營)或第20格(失敗大本營)時,游戲結束。設遙控車移到第格的概率為,試證明是等比數(shù)列,并求網(wǎng)購者參與游戲一次獲得免費購物券金額的期望值.
附:在線性回歸方程中,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地政府為改善居民的住房條件,集中建設一批經(jīng)適樓房.用了1400萬元購買了一塊空地,規(guī)劃建設8幢樓,要求每幢樓的面積和層數(shù)等都一致,已知該經(jīng)適房每幢樓每層建筑面積均為250平方米,第一層建筑費用是每平方米3000元,從第二層開始,每一層的建筑費用比其下面一層每平方米增加80元.
(1)若該經(jīng)適樓房每幢樓共層,總開發(fā)費用為萬元,求函數(shù)的表達式(總開發(fā)費用=總建筑費用+購地費用);
(2)要使該批經(jīng)適房的每平方米的平均開發(fā)費用最低,每幢樓應建多少層?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著通識教育理念的推廣及高校課程改革的深入,選修課越來越受到人們的重視.國內(nèi)一些知名院校在公共選修課的設置方面做了許多有益的探索,并且取得了一定的成果.因為選修課的課程建設處于探索階段,選修課的教學、管理還存在很多的問題,所以需要在通識教育的基礎上制定科學的、可行的解決方案,為學校選修課程的改革與創(chuàng)新、課程設置、考試考核、人才培養(yǎng)提供參考.某高校采用分層抽樣法抽取了數(shù)學專業(yè)的50名參加選修課與不參加選修課的學生的成績,統(tǒng)計數(shù)據(jù)如下表:
成績優(yōu)秀 | 成績不夠優(yōu)秀 | 總計 | |
參加選修課 | 16 | 9 | 25 |
不參加選修課 | 8 | 17 | 25 |
總計 | 24 | 26 | 50 |
(1)試運用獨立性檢驗的思想方法你能否有99%的把握認為“學生的成績優(yōu)秀與是否參加選修課有關”,并說明理由;
(2)如果從數(shù)學專業(yè)隨機抽取5名學生,求抽到參加選修課的學生人數(shù)的分布列和數(shù)學期望(將頻率當做概率計算).
參考公式:,其中.
臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),下列個結論正確的是__________(把你認為正確的答案全部寫上).
(1)任取,都有;
(2)函數(shù)在上單調(diào)遞增;
(3),對一切恒成立;
(4)函數(shù)有個零點;
(5)若關于的方程有且只有兩個不同的實根,,則.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com