【題目】如圖,某生態(tài)園將一三角形地塊的一角開(kāi)辟為水果園種植桃樹(shù),已知角,的長(zhǎng)度均大于米,現(xiàn)在邊界處建圍墻,在處圍竹籬笆

1若圍墻 長(zhǎng)度為米,如何圍可使得三角形地塊的面積最大?

2已知段圍墻高米,段圍墻高米,造價(jià)均為每平方米若圍圍墻用了元,問(wèn)如何圍可使竹籬笆用料最省?

【答案】1當(dāng)米,米時(shí), 可使三角形地塊的面積最大

2當(dāng)米,米時(shí), 可使籬笆最省

【解析】

試題分析:1易得的面積當(dāng)且僅當(dāng)時(shí),取即當(dāng)2由題意得,要使竹籬笆用料最省,只需其長(zhǎng)度最短,又 ,當(dāng)時(shí), 有最小值,從而求得正解

試題解析:設(shè)米,

1的面積

當(dāng)且僅當(dāng),即時(shí),取即當(dāng)米,米時(shí), 可使三角形地塊的面積最大

2由題意得,即,要使竹籬笆用料最省,只需其長(zhǎng)度最短,所以

,當(dāng)時(shí), 有最小值,此時(shí)當(dāng)米,米時(shí), 可使籬笆最省

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)甲,乙兩種產(chǎn)品均需用兩種原料,已知生產(chǎn)1噸每種產(chǎn)品需用原料及每天原料的可用限額如下表所示,如果生產(chǎn)1噸甲,乙產(chǎn)品可獲利潤(rùn)分別為3萬(wàn)元、4萬(wàn)元,則該企業(yè)可獲得最大利潤(rùn)為__________萬(wàn)元.

原料限額

A(噸)

3

2

12

B(噸)

1

2

8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn)與橢圓有相同的焦點(diǎn),實(shí)半軸長(zhǎng)為

(1)求雙曲線(xiàn)的方程;

(2)若直線(xiàn)與雙曲線(xiàn)有兩個(gè)不同的交點(diǎn),且(其中為原點(diǎn)),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A過(guò)定點(diǎn),且與直線(xiàn)相切.

(1)求動(dòng)圓圓心的軌跡的方程;

(2)過(guò)(1)中軌跡上的點(diǎn)作兩條直線(xiàn)分別與軌跡相交于兩點(diǎn),試探究:當(dāng)直線(xiàn)的斜率存在且傾斜角互補(bǔ)時(shí),直線(xiàn)的斜率是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的的單調(diào)區(qū)間;

(2)若恒成立,試確定實(shí)數(shù)的取值范圍;

(3)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓)的右焦點(diǎn)為,右頂點(diǎn)為已知,其中為坐標(biāo)原點(diǎn),為橢圓的離心率

(1)求橢圓的方程;

(2)設(shè)過(guò)點(diǎn)的直線(xiàn)與橢圓交于點(diǎn)不在軸上),垂直于的直線(xiàn)與交于點(diǎn),軸交于點(diǎn),,求直線(xiàn)的斜率的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面的中點(diǎn),是棱上的點(diǎn),,,

1求證:平面平面

2,求二面角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

I若函數(shù)在點(diǎn)處的切線(xiàn)方程為,求的值;

II若在區(qū)間上,函數(shù)的圖象恒在直線(xiàn)下方,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形中,,四邊形為矩形,平面平面,

(1)求證:平面

(2)點(diǎn)在線(xiàn)段上運(yùn)動(dòng),設(shè)平面與平面所成二面角的平面角為,試求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案