【題目】將函數(shù)的圖象所有點向右平移個單位,再縱坐標不變,橫坐標擴大到原來的倍,得到函數(shù)的圖象.

1)求的解析式;

2)在區(qū)間是否存在的對稱軸?若存在,求出,若不存在說明理由?

3)令,若滿足,且的終邊不共線,求的值.

【答案】(1);(2)存在對稱軸x=;(3

【解析】

1)根據(jù)圖象變換規(guī)律求函數(shù)解析式;

2)先根據(jù)正弦函數(shù)性質(zhì)求對稱軸,再判斷是否有對稱軸;

3)根據(jù)條件列方程,再根據(jù)正弦函數(shù)性質(zhì)求關(guān)系,最后求正切值.

(1)將函數(shù)各點的橫坐標縮短到原來的倍得到,然后向左移個單位得所以:

(2)令,kZ. x=k+,k+.k.

因為kZ所以k=5.故在[,]上只有fx)的一條對稱軸x=.

(3),依題意有:,

所以,

( 共線,故舍去),或

所以 .

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某家庭進行理財投資,根據(jù)長期收益率市場預測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風險型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元。

(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;

(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,怎樣分配資金才能獲得最大收益?其最大收益為多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線過點,其參數(shù)方程為為參數(shù),),以為極點,軸非負半軸為極軸,建立極坐標系,曲線的極坐標方程為

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)求已知曲線和曲線交于兩點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線過點,其參數(shù)方程為為參數(shù),),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

(1)寫出曲線的普通方程和曲線的直角坐標方程;

(2)已知曲線和曲線交于兩點之間),且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列的首項是1,公比為3,等差數(shù)列的首項是,公差為1,把中的各項按如下規(guī)則依次插入到的每相鄰兩項之間,構(gòu)成新數(shù)列,,,,,,,,…,即在兩項之間依次插入個項,則__________.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題正確的有________(只填序號)

①若直線與平面有無數(shù)個公共點,則直線在平面內(nèi);

②若直線l上有無數(shù)個點不在平面α內(nèi),lα;

③若兩條異面直線中的一條與一個平面平行,則另一條直線一定與該平面相交;

④若直線l與平面α平行,l與平面α內(nèi)的直線平行或異面;

⑤若平面α∥平面β,直線aα,直線bβ,則直線ab.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦距為,且,圓軸交于點,,為橢圓上的動點,,面積最大值為.

(1)求圓與橢圓的方程;

(2)圓的切線交橢圓于點,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦距為,且,圓軸交于點,為橢圓上的動點,,面積最大值為.

(1)求圓與橢圓的方程;

(2)圓的切線交橢圓于點,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為的單調(diào)減函數(shù)是奇函數(shù),當時,.

(Ⅰ)求的值;

(Ⅱ)求的解析式;

(Ⅲ)若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案