在極坐標(biāo)系中,直線ρ(sinθ-cosθ)=a與曲線ρ=2cosθ-4sinθ相交于A,B兩點,若|AB|=2
3
,則實數(shù)a的值為
 
考點:簡單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:把極坐標(biāo)方程化為直角坐標(biāo)方程,利用點到直線的距離公式和弦長公式即可得出.
解答: 解:直線ρ(sinθ-cosθ)=a化為y-x=a.
曲線ρ=2cosθ-4sinθ化為ρ2=2ρcosθ-4ρsinθ,∴x2+y2=2x-4y.
∴(x-1)2+(y+2)2=5.
∴圓心C(1,-2)到直線的距離d=
|1+2+a|
2
=
|3+a|
2

∵|AB|=2
3
,
3
=
r2-d2
,
∴3=5-(
3+a
2
)2
,解得a=-1或-5.
故答案為:-1或-5.
點評:本題考查了把極坐標(biāo)方程化為直角坐標(biāo)方程、點到直線的距離公式和弦長公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

運行如圖所示的流程圖,則輸出的結(jié)果an是( �。�
A、1B、-1C、-4D、-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某批發(fā)公司批發(fā)某商品,每件商品進價80元,批發(fā)價120元,該批發(fā)商為鼓勵經(jīng)銷商批發(fā),決定當(dāng)一次批發(fā)量超過100個時,每多批發(fā)一個,批發(fā)的全部商品的單價就降低0.04元,但限定最低批發(fā)價為100元,此時對應(yīng)批發(fā)量規(guī)定為最大批發(fā)量.
(1)求最大批發(fā)量;
(2)當(dāng)一次訂購量為x個,每件商品的實際批發(fā)價為P元,寫出函數(shù)P=f(x)的表達(dá)式,并求出函數(shù)的定義域;
(3)當(dāng)經(jīng)銷商一次批發(fā)多少個零件時,該批發(fā)公司可獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列的前n項和為Sn,已知前6項的和為36,Sn=324,最后6項的和為180(n>6),求數(shù)列的項數(shù)n及a9+a10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=3x的反函數(shù)是y=g(x),若g(m)+g(n)=1,則f(mn)=
 

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�