【題目】如圖,在平面直角坐標(biāo)系中,橢圓: 的離心率為,直線l:y=2上的點(diǎn)和橢圓上的點(diǎn)的距離的最小值為1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 已知橢圓的上頂點(diǎn)為A,點(diǎn)B,C是上的不同于A的兩點(diǎn),且點(diǎn)B,C關(guān)于原點(diǎn)對(duì)稱,直線AB,AC分別交直線l于點(diǎn)E,F.記直線與的斜率分別為, .
① 求證: 為定值;
② 求△CEF的面積的最小值.
【答案】(Ⅰ)(Ⅱ)①詳見解析②
【解析】試題分析:
(1)由題意求得 的值,結(jié)合橢圓焦點(diǎn)位于 軸上寫出標(biāo)準(zhǔn)方程即可;
(2)①中,分別求得 的值,然后求解其乘積即可證得結(jié)論;
②中,聯(lián)立直線與橢圓的方程,利用面積公式得出三角形面積的解析式,最后利用均值不等式求得面積的最小值即可.
試題解析:
(Ⅰ)由題知,由,
所以.
故橢圓的方程為.
(Ⅱ)① 證法一:設(shè),則,
因?yàn)辄c(diǎn)B,C關(guān)于原點(diǎn)對(duì)稱,則,
所以.
證法二:直線AC的方程為,
由得,
解得,同理,
因?yàn)?/span>B,O,C三點(diǎn)共線,則由,
整理得,
所以.
②直線AC的方程為,直線AB的方程為,不妨設(shè),則,
令y=2,得,
而,
所以,△CEF的面積
.
由得,
則 ,當(dāng)且僅當(dāng)取得等號(hào),
所以△CEF的面積的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,是定義在R上的奇函數(shù). (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一企業(yè)從某條生產(chǎn)線上隨機(jī)抽取100件產(chǎn)品,測(cè)量這些產(chǎn)品的某項(xiàng)技術(shù)指標(biāo)值x,得到如下的頻率分布表:
x | [11,13) | [13,15) | [15,17) | [17,19) | [19,21) | [21,23) |
頻數(shù) | 2 | 12 | 34 | 38 | 10 | 4 |
(Ⅰ)作出樣本的頻率分布直方圖,并估計(jì)該技術(shù)指標(biāo)值x的平均數(shù)和眾數(shù);
(Ⅱ)若x<13或x≥21,則該產(chǎn)品不合格.現(xiàn)從不合格的產(chǎn)品中隨機(jī)抽取2件,求抽取的2件產(chǎn)品中技術(shù)指標(biāo)值小于13的產(chǎn)品恰有一件的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程是 (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(Ⅰ) 求曲線與交點(diǎn)的平面直角坐標(biāo);
(Ⅱ) 點(diǎn)分別在曲線, 上,當(dāng)最大時(shí),求的面積(為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0且a≠1,下列四組函數(shù)中表示相等函數(shù)的是( )
A.y=logax與y=(logxa)﹣1
B.y=2x與y=logaa2x
C. 與y=x
D.y=logax2與y=2logax
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺(tái)儀器需增加投入100元,已知總收益滿足函數(shù):R(x)= ,其中x是儀器的月產(chǎn)量.(注:總收益=總成本+利潤(rùn))
(1)將利潤(rùn)x表示為月產(chǎn)量x的函數(shù);
(2)當(dāng)月產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的鋼板的邊界是拋物線的一部分,且垂直于拋物線對(duì)稱軸,現(xiàn)欲從鋼板上截取一塊以為下底邊的等腰梯形鋼板,其中均在拋物線弧上.設(shè)(米),且.
(1)當(dāng)時(shí),求等腰梯形鋼板的面積;
(2)當(dāng)為何值時(shí),等腰梯形鋼板的面積最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)討論函數(shù)的單調(diào)性并判斷有無極值,有極值時(shí)求出極值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com