設(shè)f(x)=
10-x(x≤0)
lgx(x>0)
,則f[f(
1
10
)]=
 
考點:函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:
1
10
>0
將其代入解析式lgx求出值為-1,-1<0代入解析式10-x求出值.
解答: 解:f(
1
10
)=lg
1
10
=-1

f[f(
1
10
)]=f(-1)=10
故答案為:10
點評:本題考查分段函數(shù)求函數(shù)值,關(guān)鍵是判定出自變量所屬的范圍,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列四個命題中,其中正確的命題的是( 。
A、過三點確定一個平面
B、矩形是平面圖形
C、四邊相等的四邊形是平面圖形
D、三條直線兩兩相交則確定一個平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a,b∈R,則“|a|>|b|成立”是“a2>b2成立”的
 
條件(填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組函數(shù)是同一函數(shù)的組數(shù)是( 。
①f(x)=4x與g(x)=22x;         
②f(x)=
3x3
與g(x)=
x2
;
③f(x)=
-2x3
與g(x)=-x
-2x

④f(x)=
x2-1
x-1
與g(x)=t+1.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(其中ω>0|φ|<
π
2
)圖象相鄰對稱軸的距離為
π
2
,一個對稱中心為(-
π
6
,0),為了得到g(x)=cosωx的圖象,則只要將f(x)的圖象( 。
A、向右平移
π
6
個單位
B、向右平移
π
12
個單位
C、向左平移
π
6
個單位
D、向左平移
π
12
個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公比不為1的等比數(shù)列{an},若a7,a1,a4成等差數(shù)列,則數(shù)列{an}的公比是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-3≤x-1≤4},B={x|m+1≤x≤2m-1}.
(1)當(dāng)x∈Z時,求A的非空真子集的個數(shù);
(2)若A∪B=A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={y|y=x2-2};B={ y|y=-x2+2},則A∩B=( 。
A、{(-
2
,0),(
2
,0)}
B、[-
2
,
2
]
C、[-2,2]
D、{-
2
,
2
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3x2-4,x>0
2
,x=0
-3x2+3,x<0
,那么f{f[f(-1)]}=
 

查看答案和解析>>

同步練習(xí)冊答案