【題目】如圖,過拋物線C:y2=2px(p>0)的準線l上的點M(﹣1,0)的直線l1交拋物線C于A,B兩點,線段AB的中點為P.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若|MA||MB|=λ|OP|2,求實數(shù)λ的取值范圍.
【答案】(Ⅰ)y2=4x;(Ⅱ)λ∈(0,).
【解析】
(Ⅰ)由題意得拋物線方程;
(Ⅱ)設(shè)直線 與聯(lián)立拋物線,由設(shè)而不求的方法得點橫縱坐標的關(guān)系,計算 的值,得出參數(shù)的取值范圍.
(Ⅰ)拋物線的準線方程為:x=﹣1,所以拋物線C的方程為:y2=4x;
(Ⅱ)設(shè)直線l1的方程為:x=my﹣1,代入拋物線中得:
y2﹣4my+4=0,△=16m2﹣16>0,∴m2>1,
設(shè)A(x,y),B(x',y'),
∴y+y'=4m,yy'=4,
|MA||MB||y﹣yM||y'﹣yM|=(1+m2)|yy'|=4(1+m2),
AB的中點P的坐標(2m2﹣1,2m),|OP|2=(2m2﹣1)2+4m2=4m4+1,
|MA||MB|=λ|OP|2λ,
令m2+1=t(t>2),
則λ在(2,+∞)上是減函數(shù),
故λ∈(0,).
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}滿足a5=9,a2+a6=14.
(1)求{an}的通項公式;
(2)若,求數(shù)列{bn}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,點是曲線上的動點,點在的延長線上,且,點的軌跡為.
(1)求直線及曲線的極坐標方程;
(2)若射線與直線交于點,與曲線交于點(與原點不重合),求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若對于任意的(為自然對數(shù)的底數(shù)),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,點M,N分別為正方體ABCD﹣A1B1C1D1的棱AA1,BB1的中點,以正方體的六個面的中心為頂點構(gòu)成一個八面體,若平面D1MNC1將該八面體分割成上、下兩部分的體積分別為V1、V2,則( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,以坐標原點為極點, 軸正半軸為極軸建立極坐標系,已知曲線的極坐標方程為: ,直線的參數(shù)方程是(為參數(shù), ).
(1)求曲線的直角坐標方程;
(2)設(shè)直線與曲線交于兩點,且線段的中點為,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,五邊形中,四邊形為長方形,為邊長為的正三角形,將沿折起,使得點在平面上的射影恰好在上.
(Ⅰ)當時,證明:平面平面;
(Ⅱ)若,求平面與平面所成二面角的余弦值的絕對值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的頂點在原點,焦點在軸的正半軸,且過點,過的直線交拋物線于,兩點.
(1)求拋物線的方程;
(2)設(shè)直線是拋物線的準線,求證:以為直徑的圓與直線相切.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正方體AC1中,E,F分別為D1C1,B1C1的中點,AC∩BD=P,A1C1∩EF=Q,如圖.
(1)若A1C交平面EFBD于點R,證明:P,Q,R三點共線.
(2)線段AC上是否存在點M,使得平面B1D1M∥平面EFBD,若存在確定M的位置,若不存在說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com