已知曲線,過上一點作一斜率為的直線交曲線于另一點(且,點列的橫坐標(biāo)構(gòu)成數(shù)列,其中.
(1)求與的關(guān)系式;
(2)令,求證:數(shù)列是等比數(shù)列;
(3)若(為非零整數(shù),),試確定的值,使得對任意,都有成立.
(1);(2)詳見解析;(3).
解析試題分析:(1)先根據(jù)直線的斜率為,利用斜率公式與構(gòu)建等式,通過化簡得到與的關(guān)系式;(2)在(1)的基礎(chǔ)上,將代入,通過化簡運算得出與之間的等量關(guān)系,然后根據(jù)等比數(shù)列的定義證明數(shù)列是等比數(shù)列;(3)先求出數(shù)列的通項公式,進(jìn)而求出數(shù)列的通項公式,將進(jìn)行作差得到,對為正奇數(shù)和正偶數(shù)進(jìn)行分類討論,結(jié)合參數(shù)分離法求出在相應(yīng)條件的取值范圍,最終再將各范圍取交集,從而確定非零整數(shù)的值.
試題解析:(1)由題意知,所以;
(2)由(1)知,
,
,故數(shù)列是以為公比的等比數(shù)列;
(3),,
,,
當(dāng)為正奇數(shù)時,則有,
由于數(shù)列對任意正奇數(shù)單調(diào)遞增,故當(dāng)時,取最小值,所以;
當(dāng)為正偶數(shù)時,則有,
而數(shù)列對任意正偶數(shù)單調(diào)遞減,故當(dāng)時,取最大值,所以,
綜上所述,,由于為非零整數(shù),因此
考點:1.直線的斜率;2.數(shù)列的遞推式;3.等比數(shù)列的定義;4.數(shù)列的單調(diào)性;5.不等式恒成立
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,,且有.
(1)寫出所有可能的值;
(2)是否存在一個數(shù)列滿足:對于任意正整數(shù),都有成立?若有,請寫出這個數(shù)列的前6項,若沒有,說明理由;
(3)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若正數(shù)項數(shù)列的前項和為,首項,點,在曲線上.
(1)求,;
(2)求數(shù)列的通項公式;
(3)設(shè),表示數(shù)列的前項和,若恒成立,求及實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某產(chǎn)品具有一定的時效性,在這個時效期內(nèi),由市場調(diào)查可知,在不做廣告宣傳且每件獲利元的前提下,可賣出件;若做廣告宣傳,廣告費為千元比廣告費為千元時多賣出件.
(Ⅰ)試寫出銷售量與的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)時,廠家應(yīng)生產(chǎn)多少件這種產(chǎn)品,做幾千元的廣告,才能獲利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}滿足,,.
(1)求證:數(shù)列為等比數(shù)列;
(2)是否存在互不相等的正整數(shù)、、,使、、成等差數(shù)列,且、、 成等比數(shù)列?如果存在,求出所有符合條件的、、;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知各項均為正數(shù)的數(shù)列{}滿足--2=0,n∈N﹡,且是a2,a4的等差中項.
(1)求數(shù)列{}的通項公式;
(2)若=,=b1+b2+…+,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),數(shù)列滿足.
⑴求數(shù)列的通項公式;
⑵設(shè),若對恒成立,求實數(shù)的取值范圍;
⑶是否存在以為首項,公比為的數(shù)列,,使得數(shù)列中每一項都是數(shù)列中不同的項,若存在,求出所有滿足條件的數(shù)列的通項公式;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列的前項和,且,.
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,求數(shù)列的前項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com