【題目】已知二次函數(shù).
(1)若,求在區(qū)間上的值域;
(2)求在區(qū)間上的最值;
(3)若的在區(qū)間上無最值,求m的取值范圍;
【答案】(1) ;(2)①當(dāng)時(shí), 最小值為,最大值為.
②當(dāng)時(shí), 最小值為,最大值為
③當(dāng)時(shí), 最小值為,最大值為
④當(dāng)時(shí), 最小值為,最大值為
(3) 或
【解析】
(1)代入,算出的對(duì)稱軸再判斷最值求得值域即可.
(2)討論對(duì)稱軸與區(qū)間的位置關(guān)系再求解最值即可.
(3)根據(jù)為開區(qū)間可知二次函數(shù)對(duì)稱軸在區(qū)間外,再列式求解即可.
(1)當(dāng)時(shí), ,對(duì)稱軸為.
故在區(qū)間上單調(diào)遞減.
故
.
故在區(qū)間上的值域?yàn)?/span>
(2) 對(duì)稱軸為.
①當(dāng),即時(shí), 在上單調(diào)遞增.
故最小值為,最大值為
②當(dāng),即時(shí), 在上單調(diào)遞減.
最小值為,最大值為
③當(dāng)即時(shí),最小值為.
(i)當(dāng)即時(shí),最大值為
(ii)當(dāng)即時(shí),最大值為.
(3) 的在區(qū)間上無最值,故對(duì)稱軸在區(qū)間外.
故或,解得或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】西北某省會(huì)城市計(jì)劃新修一座城市運(yùn)動(dòng)公園,設(shè)計(jì)平面如圖所示:其為五邊形,其中三角形區(qū)域為球類活動(dòng)場(chǎng)所;四邊形為文藝活動(dòng)場(chǎng)所,,為運(yùn)動(dòng)小道(不考慮寬度),,千米.
(1)求小道的長(zhǎng)度;
(2)求球類活動(dòng)場(chǎng)所的面積最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形是邊長(zhǎng)為的菱形,,與交于點(diǎn),平面平面,,,.
(1)求證:平面;
(2)若為等邊三角形,點(diǎn)為的中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】回答下列兩個(gè)問題, 并給出例子或證明.
(1)對(duì)任意正整數(shù), 在平面上是否都存在個(gè)不在同一條直線上的點(diǎn), 使得任意兩點(diǎn)間的距離都為正整數(shù)?
(2)在平面上是否存在兩兩不同的無限點(diǎn)列組成的點(diǎn)集, 使得內(nèi)所有點(diǎn)不在同一條直線上, 且內(nèi)任意兩點(diǎn)間的距離為正整數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,的外心為O,E是AC的中點(diǎn),直線OE交AB于點(diǎn)D,M、N分別是的外心、內(nèi)心.若AB=2BC,證明:為直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中, , 平面,側(cè)面是正方形,點(diǎn)為棱的中點(diǎn),點(diǎn)、分別在棱、上,且, .
(1)證明:平面平面;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),.現(xiàn)已畫出函數(shù)在軸右側(cè)的圖象,如圖所示.
(1)畫出函數(shù)在軸左側(cè)的圖象,根據(jù)圖象寫出函數(shù)在上的單調(diào)區(qū)間;
(2)求函數(shù)在上的解析式;
(3)解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】手機(jī)作為客戶端越來越為人們所青睞,通過手機(jī)實(shí)現(xiàn)衣食住行消費(fèi)已經(jīng)成為一種主要的消費(fèi)方式.在某市,隨機(jī)調(diào)查了200名顧客購(gòu)物時(shí)使用手機(jī)支付的情況,得到如下的2×2列聯(lián)表,已知從使用手機(jī)支付的人群中隨機(jī)抽取1人,抽到青年的概率為.
(I)根據(jù)已知條件完成2×2列聯(lián)表,并根據(jù)此資料判斷是否有99.5%的把握認(rèn)為“市場(chǎng)購(gòu)物用手機(jī)支付與年齡有關(guān)”?
2×2列聯(lián)表:
青年 | 中老年 | 合計(jì) | |
使用手機(jī)支付 | 120 | ||
不使用手機(jī)支付 | 48 | ||
合計(jì) | 200 |
(Ⅱ)現(xiàn)采用分層抽樣的方法從這200名顧客中按照“使用手機(jī)支付”和“不使用手機(jī)支付”抽取一個(gè)容量為10的樣本,再?gòu)闹须S機(jī)抽取3人,求這三人中“使用手機(jī)支付”的人數(shù)的分布列及期望.
附:
0.05 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com