(本小題滿分15分)如圖所示,已知橢圓和拋物線有公共焦點(diǎn), 的中心和的頂點(diǎn)都在坐標(biāo)原點(diǎn),過點(diǎn)的直線與拋物線分別相交于兩點(diǎn)
(1)寫出拋物線的標(biāo)準(zhǔn)方程;
(2)若,求直線的方程;
(3)若坐標(biāo)原點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在拋物線上,直線與橢圓有公共點(diǎn),求橢圓的長(zhǎng)軸長(zhǎng)的最小值。
解:(1)..............................3分

(2)設(shè)


..............................5分



..............................7分

..............................9分
(3)..............................11分

橢圓設(shè)為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的離心率為,則它的漸近線方程是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)斜率為的直線與橢圓交于不同的兩點(diǎn),且這兩個(gè)交點(diǎn)在軸上的射影恰好是橢圓的兩個(gè)焦點(diǎn),則該橢圓的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知中心在原點(diǎn)的橢圓的右焦點(diǎn)為,離心率為
(1)  求橢圓的方程
(2)  若直線與橢圓恒有兩個(gè)不同交點(diǎn),且(其中為原點(diǎn)),求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C的方程為,焦點(diǎn)為F,有一定點(diǎn),A在拋物線準(zhǔn)線上的射影為H,P為拋物線上一動(dòng)點(diǎn).
(1)當(dāng)|AP|+|PF|取最小值時(shí),求;
(2)如果一橢圓E以O(shè)、F為焦點(diǎn),且過點(diǎn)A,求橢圓E的方程及右準(zhǔn)線方程;
(3)設(shè)是過點(diǎn)A且垂直于x軸的直線,是否存在直線,使得與拋物線C交于兩個(gè)
不同的點(diǎn)M、N,且MN恰被平分?若存在,求出的傾斜角的范圍;若不存在,請(qǐng)
說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)在直角坐標(biāo)系xOy中,橢圓C1的左、右焦點(diǎn)分別為F1、F2.F2也是拋物線C2的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且
(Ⅰ)求C1的方程;
(Ⅱ)平面上的點(diǎn)N滿足,直線l∥MN,且與C1交于A、B兩點(diǎn),若·=0,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓與雙曲線有相同的焦點(diǎn), 則的值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓方程為,則其離心率為              

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的對(duì)稱軸為坐標(biāo)軸,一個(gè)焦點(diǎn)為,點(diǎn)在橢圓
(Ⅰ)求橢圓的謝方程
(Ⅱ)已知直線與橢圓交于兩點(diǎn),求的面積
(Ⅲ)設(shè)為橢圓上一點(diǎn),若,求點(diǎn)的坐標(biāo)

查看答案和解析>>

同步練習(xí)冊(cè)答案