(本題滿分14分)在直角坐標系xOy中,橢圓C1的左、右焦點分別為F1、F2.F2也是拋物線C2的焦點,點M為C1與C2在第一象限的交點,且
(Ⅰ)求C1的方程;
(Ⅱ)平面上的點N滿足,直線l∥MN,且與C1交于A、B兩點,若·=0,求直線l的方程.
解:(Ⅰ)由:.設,上,因為,所以,得,.M在上,且橢圓的半焦距,于是,消去并整理得,解得不合題意,舍去).故橢圓的方程為.(6分)
(Ⅱ)由知四邊形是平行四邊形,其中心為坐標原點,
因為,所以的斜率相同,故的斜率
的方程為.由消去并化簡得
,,,.因為,所以

.所以
此時,
故所求直線的方程為,或.(14分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓,則當在此橢圓上存在不同兩點關于直線對稱時的取值范圍為(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分13分)已知圓C: 
(1)若平面上有兩點A(1 , 0),B(-1 , 0),點P是圓C上的動點,求使 取得最小值時點P的坐標.   
(2) 若軸上的動點,分別切圓兩點
①若,求直線的方程;
②求證:直線恒過一定點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線(a0)與雙曲線相交于點A,B. 已知點A的坐標為(1,4),點B在第三象限內(nèi),且△AOB的面積為3(O為坐標原點).
(1)求實數(shù)a,b,k的值;
(2)過拋物線上點A作直線AC∥x軸,交拋物線于另一點C,求所有滿足△EOC∽△AOB的點E的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分15分)如圖所示,已知橢圓和拋物線有公共焦點, 的中心和的頂點都在坐標原點,過點的直線與拋物線分別相交于兩點
(1)寫出拋物線的標準方程;
(2)若,求直線的方程;
(3)若坐標原點關于直線的對稱點在拋物線上,直線與橢圓有公共點,求橢圓的長軸長的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分)
已知拋物線與直線相切于點A(1,1)。
(1)求的解析式;
(2)若對任意,不等式恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

、過點作傾斜角為的直線與曲線交于點,求最小值及相應的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若雙曲線與直線無交點,則離心率的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

((本小題滿分12分)
已知橢圓C:(常數(shù)),P是曲線C上的動點,M是曲線C的右
頂點,定點A的坐標為(2,0).
(1)若M與A重合,求曲線C的焦點坐標.
(2)若,求|PA|的最大值與最小值.
(3)若|PA|最小值為|MA|,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案