【題目】如圖,在三棱錐中,,為的中點,平面,垂足是線段上的靠近點的三等分點.已知
(1)證明:;
(2)若點是線段上一點,且平面平面.試求的值.
【答案】(1)詳見解析(2)
【解析】
(1)利用已知條件證明面,再由線面垂直的性質(zhì)定理即可得到證明;(2)建立空間直角坐標(biāo)系,設(shè),求出平面平面的法向量,由平面平面可知法向量也是互相垂直的,由數(shù)量積為0即可得到答案.
解:(1)∵,是的中點,∴,
面,
∴,
∴面,面,∴
(2)過點O作ON//BC交AB于點N,由已知可得ON,以O(shè)N,OD,OP所在直線為x軸和y軸和z軸建立空間直角坐標(biāo)系,不妨設(shè),則.
設(shè),∴,
設(shè)面的法向量,∵點在面上所以
,即得
∴
設(shè)面法向量為,
,∴
兩個面垂直,所以他們的法向量也是互相垂直的,
解得;
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是邊長為2的正方形,平面平面,且.
(1)證明:平面平面;
(2)當(dāng),且與平面所成角的正切值為時,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:對棱相等的四面體為等腰四面體.
(1)若等腰四面體的每條棱長都是,求該等腰四面體的體積;
(2)求證:等腰四面體每個面的三角形均為銳角三角形:
(3)設(shè)等腰四面體的三個側(cè)面與底面所成的角分別為,請判斷是否為定值?如果是定值,請求出該定值;如果不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】湖北省2019年公布了新的高考方案,實行“3+1+2”模式.某學(xué)生按方案要求任意選擇,則該生選擇考?xì)v史和化學(xué)的概率為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖正方體的棱長為1,線段上有兩個動點且,則下列結(jié)論錯誤的是( )
A. 與所成角為
B. 三棱錐的體積為定值
C. 平面
D. 二面角是定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程。
已知曲線C:(t為參數(shù)), C:(為參數(shù))。
(1)化C,C的方程為普通方程,并說明它們分別表示什么曲線;
(2)若C上的點P對應(yīng)的參數(shù)為,Q為C上的動點,求中點到直線
(t為參數(shù))距離的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正數(shù)數(shù)列的前項和為,,且.
(1)求的通項公式.
(2)對任意,將數(shù)列中落在區(qū)間內(nèi)的項的項數(shù)記為,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有4名學(xué)生參加演講比賽,有兩個題目可供選擇,組委會決定讓選手通過擲一枚質(zhì)地均勻的骰子選擇演講的題目,規(guī)則如下:選手?jǐn)S出能被3整除的數(shù)則選擇題目,擲出其他的數(shù)則選擇題目.
(1)求這4個人中恰好有1個人選擇題目的概率;
(2)用分別表示這4個人中選擇題目的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com