【題目】已知函數(shù)在和時取得極值.
(1)求的值;
(2)求函數(shù)在上的最大值.
【答案】(1);(2)3.
【解析】
(1)求出函數(shù)的導數(shù),得到﹣3,1是方程f′(x)=0的根,解方程組即可;
(2)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調性即可.
(1)f′(x)=3x2+2ax+b,
當x=﹣3,x=1時取得極值,
故﹣3,1是方程f′(x)=0的解,
故,
解得:a=3,b=-9;經檢驗,滿足在和時取得極值,∴a=3,b=-9;
(2)由(1)得:f(x)=,f′(x)=3x2+6x-9=3(x+3)(x﹣1),
令f′(x)>0,解得:x>1或x<﹣3,令f′(x)<0,解得:﹣3<x<1,
∴f(x)在(﹣∞,﹣3)遞增,在(﹣3,1)遞減,在(1,+∞)遞增.又x,
∴f(x)在遞減,在遞增, 又f(0)=1,f(2)=3,∴函數(shù)在上的最大值為3.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),曲線在點處的切線方程為.
(1)求的解析式;
(2)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正三棱柱中, 分別為的中點,設.
(1)求證:平面平面;
(2)若二面角的平面角為,求實數(shù)的值,并判斷此時二面角是否為直二面角,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】本題共3個小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.
已知數(shù)列滿足.
(1)若,求的取值范圍;
(2)若是公比為等比數(shù)列,,求的取值范圍;
(3)若成等差數(shù)列,且,求正整數(shù)的最大值,以及取最大值時相應數(shù)列的公差.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調區(qū)間;
(Ⅱ)若對定義域每的任意恒成立,求實數(shù)的取值范圍;
(Ⅲ)證明:對于任意正整數(shù),不等式恒成立。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知奇函數(shù)(實數(shù)、為常數(shù)),且滿足.
(1)求函數(shù)的解析式;
(2)試判斷函數(shù)在區(qū)間上的單調性,并用函數(shù)單調性定義證明;
(3)當時,函數(shù)恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】 為向國際化大都市目標邁進,沈陽市今年新建三大類重點工程,它們分別是30項基礎設施類工程,20項民生類工程和10項產業(yè)建設類工程.現(xiàn)有來沈陽的3名工人相互獨立地從這60個項目中任選一個項目參與建設.
(Ⅰ)求這3人選擇的項目所屬類別互異的概率;
(Ⅱ)將此3人中選擇的項目屬于基礎設施類工程或產業(yè)建設類工程的人數(shù)記為,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),令.
(1)當時,求函數(shù)的單調遞增區(qū)間;
(2)若關于的不等式恒成立,求整數(shù)的最小值;
(3)若,正實數(shù)滿足,證明: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com