試證明函數(shù)f(x)=
2
x2
在(0,+∞)上是單調(diào)減函數(shù).
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)單調(diào)性的定義即可證明函數(shù)的單調(diào)性.
解答: 證明:設(shè)任意的x1,x2∈(0,+∞),且x1<x2,
則f(x1)-f(x2)=
2
x12
-
2
x22
=
2(x22-x12)
x12x22
=
2(x2-x1)(x2+x1)
x12x22
,
因?yàn)?<x1<x2,
所以x2-x1>0,x1+x2>0,
所以f(x1)-f(x2)>0,
即f(x1)>f(x2),
故函數(shù)f(x)=
2
x2
在(0,+∞)上是單調(diào)減函數(shù).
點(diǎn)評(píng):本題考查函數(shù)單調(diào)性的判斷與證明,要求熟練掌握利用定義證明函數(shù)的單調(diào)性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)=ln(4+3x-x2)的單調(diào)遞增區(qū)間是(  )
A、(-∞,
3
2
]
B、[
3
2
,+∞)
C、(-1,
3
2
]
D、[
3
2
,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,a4=-12,a8=-4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)從數(shù)列{an}中依次取出a1,a2,a4,a8,…,a2n-1,構(gòu)成一個(gè)新的數(shù)列{bn},求{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,圓O與直線x-
3
y=4相切.
(Ⅰ)求圓O的方程;
(Ⅱ)若圓O上有兩點(diǎn)M,N關(guān)于直線x+2y=0對(duì)稱,且|MN|=2
3
,求直線MN的方程;
(Ⅲ)設(shè)圓O與x軸的交點(diǎn)為A,B,若圓內(nèi)一動(dòng)點(diǎn)P滿足|PA|•|PB|=|PO|2,求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=4cos2(2π-x)+4
3
cos(
π
2
-x)cosx-2,x∈R
(1)求函數(shù)的最小正周期;
(2)求函數(shù)的最大值及其相對(duì)應(yīng)的x值;
(3)寫出函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,若a5=6,a8=15,求公差d及a14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lg(x2-x-6)的定義域?yàn)榧螦,函數(shù)g(x)=
6
x
-1
的定義域?yàn)榧螧.已知α:x∈A∩B,β:x滿足3x+p<0,且α是β的充分條件,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

先后從分別標(biāo)有號(hào)碼1,2,3,4的4個(gè)大小、形狀完全相同的球中,隨機(jī)先后抽取2個(gè)球,設(shè)(i,j)表示第一次抽取的i號(hào),第二次抽取的j號(hào)兩個(gè)球.
(Ⅰ)寫出隨機(jī)抽取兩個(gè)球的所有基本事件;
(Ⅱ)求抽到的2個(gè)球的標(biāo)號(hào)之和大于5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用分析法證明:若a>0,則
a2+
1
a2
+2≥a+
1
a
+
2

查看答案和解析>>

同步練習(xí)冊(cè)答案