已知函數(shù)f(x)=ax+xlnx(a為常數(shù),e為自然對(duì)數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)(e,f(e))處的切線方程為y=3x-e.
(1)求f(x)的單調(diào)區(qū)間;
(2)若k∈Z,且k<
f(x)
x-1
對(duì)任意x>1都成立,求k的最大值.
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專(zhuān)題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)由f′(e)=3得a,從而可得f′(x)=lnx+2,在定義域內(nèi)解不等式f′(x)>0,f′(x)<0可得函數(shù)的單調(diào)區(qū)間;
(2)k<
f(x)
x-1
對(duì)任意x>1都成立,等價(jià)于k<[
f(x)
x-1
]min
,利用導(dǎo)數(shù)可表示[
f(x)
x-1
]min
;
解答: 解:(1)求導(dǎo)數(shù)可得f′(x)=a+lnx+1,
∵函數(shù)f(x)=ax+xlnx的圖象在點(diǎn)x=e(e為自然對(duì)數(shù)的底數(shù))處的切線斜率為3,
∴f′(e)=3,∴a+lne+1=3,∴a=1,
∴f(x)=x+xlnx,f′(x)=lnx+2,
由f′(x)>0得x>
1
e2
,由f′(x)<0得0<x<
1
e2

∴f(x)的單調(diào)遞減區(qū)間為(0,
1
e2
),單調(diào)遞增區(qū)間為(
1
e2
,+∞).
(2)當(dāng)x>1時(shí),令g(x)=
f(x)
x-1
=
x+xlnx
x-1
,則g′(x)=
x-2-lnx
(x-1)2
,
設(shè)h(x)=x-2-lnx,則h′(x)=1-
1
x
=
x-1
x
>0,
h(x)在(1,+∞)上為增函數(shù),
∵h(yuǎn)(3)=1-ln3<0,h(4)=2-ln4>0,
∴?x0∈(3,4),且h(x0)=0,
當(dāng)x∈(1,x0)時(shí),h(x)<0,g′(x)<0,g(x)在(1,x0)上單調(diào)遞減;
當(dāng)x∈(x0,+∞)時(shí),h(x)>0,g′(x)>0,g(x)在(x0,+∞)上單調(diào)遞增.
∴g(x)min=g(x0)=
x0+x0lnx0
x0-1
,
∵h(yuǎn)(x0)=x0-2-lnx0=0,
∴x0-1=1+lnx0,g(x0)=x0,
∴k<x0∈(3,4),∴k的最大值為3.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查導(dǎo)數(shù)的幾何意義,考查函數(shù)的單調(diào)性與最值,解題時(shí)合理構(gòu)造函數(shù)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下五個(gè)命題:
(1)不共面的四點(diǎn)中,其中任意三點(diǎn)不共線;
(2)垂直同一條直線的兩條直線互相平行;
(3)平行于同一條直線的兩條直線互相平行;
(4)若直線a,b共面,直線a,c共面,則直線b,c共面;
(5)依次首尾相接的四條線段必共面.
其中正確命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校要從演講初賽勝出的4名男生和2名女生中任選2人參加決賽.
(Ⅰ)用列舉法列出由6個(gè)人中任選2人的全部可能結(jié)果,并求選出的2個(gè)人中有1名女生的概率;
(Ⅱ)用列舉法求選出的2個(gè)人中至少有1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx+
1
x

(1)求曲線y=f(x)在(2,f(2))處的切線方程;
(2)若g(x)=f(x)-
1
x
+ax2-2x有兩個(gè)不同的極值點(diǎn).其極小值為M,試比較2M與-3的大小,并說(shuō)明理由;
(3)設(shè)q>p>2,求證:當(dāng)x∈(p,q)時(shí),
f(x)-f(p)
x-p
f(x)-f(p)
x-q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的頂點(diǎn)A(-1,4),AB邊上的中垂線方程為x+7y-2=0,∠C的平分線所在的直線方程為x-2y+4=0.
(1)求頂點(diǎn)B,C坐標(biāo);
(2)過(guò)點(diǎn)C作直線l與圓x2+y2=4交于M,N兩點(diǎn),求MN的中點(diǎn)P的運(yùn)動(dòng)軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex-ax,g(x)=-ax(
1
2
x-1)+1
(Ⅰ)已知區(qū)間[-1,1]是不等式f(x)>0的解集的子集,求a的取值范圍;
(Ⅱ)已知函數(shù)φ(x)=f(x)+g(x),在函數(shù)y=φ(x)圖象上任取兩點(diǎn)A(x1,y1),B(x2,y2),若存在a使得y1-y2≤m(x1-x2)恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+bx,g(x)=ax3-3bx-4a+b,其中a>0,b∈R,
(1)證明:當(dāng)0≤x≤2時(shí),函數(shù)g(x)的最大值為|4a-3b|-2b;
(2)若對(duì)任意的x1,x2∈[-2,2],都有|f(x1)-f(x2)|≤16,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,PA⊥平面ABCD,四邊形ABCD是矩形,PA=AD=a,M、N分別是AB、PC的中點(diǎn).
(Ⅰ)求平面PCD與平面ABCD所成二面角的大;
(Ⅱ)求證:平面MND⊥平面PCD;
(Ⅲ)當(dāng)AB的長(zhǎng)度變化時(shí),求異面直線PC與AD所成角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在(1+x)n的展開(kāi)式中,若第3項(xiàng)與第6項(xiàng)系數(shù)相等,且n等于多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案