【題目】已知直角梯形ABCD中,AD∥BC,∠ADC=90°,A(-3,-10),
B (-2,-1),C(3,4),
(1)求邊AD和CD所在的直線方程;
(2)數(shù)列的前項和為,點在直線CD上,求證為等比數(shù)列.
【答案】(1);(2)見解析.
【解析】試題分析:(1)根據(jù)兩點間的斜率公式可得,根據(jù)兩直線平行、垂直的性質(zhì)可得邊AD和CD所在的直線的斜率,利用點斜式可得結(jié)果;(2)由(1)得,
當時, ,兩式相減可得是首項為,公比為的等比數(shù)列.
試題解析:(1) B (-2,-1),C(3,4),
,
又AD∥BC,∠ADC=90°,
,
又 A(-3,-10),C(3,4),
邊AD所在的直線方程為,即
邊CD所在的直線方程為,即.
(2)由(1)得,即,①
當時, ,②
①-②得, ,即,
又當時, ,解得,
是首項為,公比為的等比數(shù)列.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)面,均為正方形,,點是棱的中點.請建立適當?shù)淖鴺讼,求解下列問題:
(Ⅰ)求證:異面直線與互相垂直;
(Ⅱ)求二面角(鈍角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】曲線上任意一點M滿足, 其中F (-F (拋物線的焦點是直線y=x-1與x軸的交點, 頂點為原點O.
(I)求, 的標準方程;
(II)請問是否存在直線l滿足條件:① 過的焦點;② 與交于不同兩點, 且滿足?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校收集該校學生從家到學校的時間后,制作成如下的頻率分布直方圖:
(1)求的值及該校學生從家到校的平均時間;
(2)若該校因?qū)W生寢室不足,只能容納全校的學生住校,出于安全角度考慮,從家到校時間較長的學生才住校,請問從家到校時間多少分鐘以上開始住校.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四邊形中,已知,,點在軸上,,且對角線.
(1)求點的軌跡的方程;
(2)若點是直線上任意一點,過點作點的軌跡的兩切線,為切點,直線是否恒過一定點?若是,請求出這個定點的坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從參加考試的學生中抽出60名學生,將其成績(均為整數(shù))分成六組[40,50),[50,60), ...,[90,100]后畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(Ⅰ)求成績落在[70,80)上的頻率,并補全這個頻率分布直方圖;
(Ⅱ) 估計這次考試的及格率(60分及以上為及格)和平均分;
(Ⅲ) 從成績在[40,50)和[90,100]的學生中任選兩人,求他們在同一分數(shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平潭國際“花式風箏沖浪”集訓隊,在平潭龍鳳頭海濱浴場進行集訓,海濱區(qū)域的某個觀測點觀測到該處水深(米)是隨著一天的時間呈周期性變化,某天各時刻的水深數(shù)據(jù)的近似值如下表:
0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | |
1.5 | 2.4 | 1.5 | 0.6 | 1.4 | 2.4 | 1.6 | 0.6 | 1.5 |
(Ⅰ)根據(jù)表中近似數(shù)據(jù)畫出散點圖(坐標系在答題卷中).觀察散點圖,從
①, ②,③
中選擇一個合適的函數(shù)模型,并求出該擬合模型的函數(shù)解析式;(Ⅱ)為保證隊員安全,規(guī)定在一天中的5~18時且水深不低于1.05米的時候進行訓練,根據(jù)(Ⅰ) 中的選擇的函數(shù)解析式,試問:這一天可以安排什么時間段組織訓練,才能確保集訓隊員的安全。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a=(1,2),b=(-2,n),a與b的夾角是45°.
(1) 求b;
(2) 若c與b同向,且a與c-a垂直,求向量c的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在長方體中,,是棱上的一點.
(1)求證:平面;
(2)求證:;
(3)若是棱的中點,在棱上是否存在點,使得平面?若存在,求出線段的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com