【題目】為了提高學生的身體素質,某校高一、高二兩個年級共336名學生同時參與了“我運動,我健康,我快樂”的跳繩、踢毽等系列體育健身活動.為了了解學生的運動狀況,采用分層抽樣的方法從高一、高二兩個年級的學生中分別抽取7名和5名學生進行測試.下表是高二年級的5名學生的測試數據(單位:個/分鐘):
(1)求高一、高二兩個年級各有多少人?
(2)設某學生跳繩個/分鐘,踢毽個/分鐘.當,且時,稱該學生為“運動達人”.
①從高二年級的學生中任選一人,試估計該學生為“運動達人”的概率;
②從高二年級抽出的上述5名學生中,隨機抽取3人,求抽取的3名學生中為“運動達人”的人數的分布列和數學期望.
科目:高中數學 來源: 題型:
【題目】某企業(yè)參加項目生產的工人為人,平均每人每年創(chuàng)造利潤萬元.根據現實的需要,從項目中調出人參與項目的售后服務工作,每人每年可以創(chuàng)造利潤萬元(),項目余下的工人每人每年創(chuàng)造利圖需要提高
(1)若要保證項目余下的工人創(chuàng)造的年總利潤不低于原來名工人創(chuàng)造的年總利潤,則最多調出多少人參加項目從事售后服務工作?
(2)在(1)的條件下,當從項目調出的人數不能超過總人數的時,才能使得項目中留崗工人創(chuàng)造的年總利潤始終不低于調出的工人所創(chuàng)造的年總利潤,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某企業(yè)生產的某種產品中抽取100件,測量這些產品的一項質量指標值,由測量結果得如下頻率分布直方圖:
(1)求這100件產品質量指標值的樣本平均數和樣本方差(同一組的數據用該組區(qū)間的中點值作為代表);
(2)由直方圖可以認為,這種產品的質量指標值服從正態(tài)分布,其中近似為樣本平均數,近似為樣本方差。
(i)若某用戶從該企業(yè)購買了10件這種產品,記表示這10件產品中質量指標值位于(187.4,225.2)的產品件數,求;
(ii)一天內抽取的產品中,若出現了質量指標值在之外的產品,就認為這一天的生產過程中可能出現了異常情況,需對當天的生產過程進行檢查下。下面的莖葉圖是檢驗員在一天內抽取的15個產品的質量指標值,根據近似值判斷是否需要對當天的生產過程進行檢查。
附:,,,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據國家統(tǒng)計局發(fā)布的數據,2019年11月全國(居民消費價格指數),同比上漲,上漲的主要因素是豬肉價格的上漲,豬肉加上其他畜肉影響上漲3.27個百分點.下圖是2019年11月一籃子商品權重,根據該圖,下列四個結論正確的有______.
①一籃子商品中權重最大的是居住
②一籃子商品中吃穿住所占權重超過
③豬肉在一籃子商品中權重為
④豬肉與其他禽肉在一籃子商品中權重約為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市勞動部門堅持就業(yè)優(yōu)先,釆取多項措施加快發(fā)展新興產業(yè),服務經濟,帶來大量就業(yè)崗位,據政府工作報告顯示,截至2018年末,全市城鎮(zhèn)新增就業(yè)21.9萬人,創(chuàng)歷史新高.城鎮(zhèn)登記失業(yè)率為4.2%,比上年度下降0.73個百分點,處于近20年來的最低水平.
(1)現從該城鎮(zhèn)適齡人群中抽取100人,得到如下列聯(lián)表:
失業(yè) | 就業(yè) | 合計 | |
男 | 3 | 62 | 65 |
女 | 2 | 33 | 35 |
合計 | 5 | 95 | 100 |
根據聯(lián)表判斷是否有99%的把握認為失業(yè)與性別有關?
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(2)調查顯示,新增就業(yè)人群中,新興業(yè)態(tài),民營經濟,大型國企對就業(yè)支撐作用不斷增強,其崗位比例為2∶5∶3,現要抽取一個樣本容量為50的樣本,則這三種崗位應該各抽取多少人?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標坐標系中,曲線的參數方程為(為參數),曲線: .以為極點, 軸的非負半軸為極軸,與直角坐標系取相同的長度單位,建立極坐標系.
(1)求曲線的極坐標方程;
(2)射線()與曲線的異于極點的交點為,與曲線的交點為,求.
【答案】(1) 的極坐標方程為, 的極坐標方程為;(2) .
【解析】試題分析:(1)先根據三角函數平方關系消參數得曲線,再根據將曲線的極坐標方程;(2)將代人曲線的極坐標方程,再根據求.
試題解析:(1)曲線的參數方程(為參數)
可化為普通方程,
由,可得曲線的極坐標方程為,
曲線的極坐標方程為.
(2)射線()與曲線的交點的極徑為,
射線()與曲線的交點的極徑滿足,解得,
所以.
【題型】解答題
【結束】
23
【題目】設函數.
(1)設的解集為,求集合;
(2)已知為(1)中集合中的最大整數,且(其中,,為正實數),求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設拋物線C1:的準線1與x軸交于橢圓C2:的右焦點F2,F1為C2的左焦點.橢圓的離心率為,拋物線C1與橢圓C2交于x軸上方一點P,連接PF1并延長其交C1于點Q,M為C1上一動點,且在P,Q之間移動.
(1)當取最小值時,求C1和C2的方程;
(2)若△PF1F2的邊長恰好是三個連續(xù)的自然數,當△MPQ面積取最大值時,求面積最大值以及此時直線MP的方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com