【題目】設(shè)是定義在R上的函數(shù),對(duì)任意的,恒有,且當(dāng)時(shí), .
(1)求的值;
(2)求證:對(duì)任意,恒有.
(3)求證:在R上是減函數(shù).
【答案】(1);
(2)證明見(jiàn)解析;
(3)證明見(jiàn)解析;
【解析】
(1)應(yīng)用取特殊值法.令,根據(jù)當(dāng)時(shí),,可以求出的值;
(2)當(dāng)時(shí),應(yīng)用,再根據(jù)當(dāng)時(shí),,可以證明此時(shí)
,再結(jié)合(1)的結(jié)論,可以證明對(duì)任意,恒有.
(3)運(yùn)用定義法證明在R上是減函數(shù).在證明過(guò)程中結(jié)合(2)中的結(jié)論,和已知當(dāng)時(shí),,這一條件.
(1) 令,有,當(dāng)時(shí),,所以有,于是有
;
(2)當(dāng)時(shí),有,因?yàn)?/span>,所以,已知當(dāng)時(shí),,所以,由(1)可知,所以有;
已知當(dāng)時(shí),;
由(1)可知,故對(duì)任意,恒有;
(3)設(shè)且,所以有,而已知當(dāng)時(shí),,因此有
,而,由(2)的證明過(guò)程可知:,
于是由可得,所以有,根據(jù)(2)的性質(zhì)可知:,所以有,因此在R上是減函數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中錯(cuò)誤的個(gè)數(shù)是( )
①?gòu)哪成鐓^(qū)65戶(hù)高收入家庭,280戶(hù)中等收入家庭,105戶(hù)低收入家庭中選出100戶(hù)調(diào)查社會(huì)購(gòu)買(mǎi)力的某一項(xiàng)指標(biāo),應(yīng)采用的最佳抽樣方法是分層抽樣
②線(xiàn)性回歸直線(xiàn)一定過(guò)樣本中心點(diǎn)
③對(duì)于一組數(shù)據(jù),如果將它們改變?yōu)?/span>,則平均數(shù)與方差均發(fā)生變化
④若一組數(shù)據(jù)1、、2、3的眾數(shù)是2,則這組數(shù)據(jù)的中位數(shù)是2
⑤用系統(tǒng)抽樣方法從編號(hào)為1,2,3,…,700的學(xué)生中抽樣50人,若第2段中編號(hào)為20的學(xué)生被抽中,按照等間隔抽取的方法,則第5段中被抽中的學(xué)生編號(hào)為76
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】知向量,,函數(shù),若的圖象上相鄰兩條對(duì)稱(chēng)軸的距離為,且圖象過(guò)點(diǎn).
(1)求表達(dá)式和的單調(diào)增區(qū)間;
(2)將函數(shù)的圖象向右平移個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,若函數(shù)在區(qū)間上有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,圓交軸于點(diǎn),交軸于點(diǎn).以為頂點(diǎn),分別為左、右焦點(diǎn)的橢圓,恰好經(jīng)過(guò)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)經(jīng)過(guò)點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A,B是半徑為2的圓周上的定點(diǎn),P為圓周上的動(dòng)點(diǎn),是銳角,大小為β.圖中陰影區(qū)域的面積的最大值為
A. 4β+4cosβB. 4β+4sinβC. 2β+2cosβD. 2β+2sinβ
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn).
(1)證明:AE⊥平面PCD;
(2)求二面角A-PD-C的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓經(jīng)過(guò)點(diǎn),離心率.
(1)求的方程;
(2)設(shè)直線(xiàn)經(jīng)過(guò)點(diǎn)且與相交于兩點(diǎn)(異于點(diǎn)),記直線(xiàn)的斜率為,直線(xiàn)的斜率為,證明: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)實(shí)數(shù)滿(mǎn)足,其中.實(shí)數(shù)滿(mǎn)足.
(1)若,且為真,求實(shí)數(shù)的取值范圍;
(2)非是非的充分不必要條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com