用數(shù)學(xué)歸納法證明(n+1)(n+2)…(n+n)=2n•1•3•5•…•(2n-1)時,從k變到k+1時,左邊應(yīng)增添的因式是


  1. A.
    2k+1
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    2(2k+1)
D
分析:分別求出n=k時左邊的式子,n=k+1時左邊的式子,用n=k+1時左邊的式子,比較兩個表達(dá)式,即得所求.
解答:當(dāng)n=k時,左邊等于 (k+1)(k+2)…(k+k)=(k+1)(k+2)…(2k),
當(dāng)n=k+1時,左邊等于 (k+2)(k+3)…(k+k)(2k+1)(2k+2),
故從“k”到“k+1”的證明,左邊需增添的代數(shù)式是 =2(2k+1),
故選D.
點(diǎn)評:本題考查用數(shù)學(xué)歸納法證明等式,用n=k+1時,左邊的式子除以n=k時,左邊的式子,即得所求.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在用數(shù)學(xué)歸納法證明(n+1)(n+2)…(n+n)=2n•1•2•3•…•(2n-1)(n∈N*)時,從k到k+1,左端需要增加的代數(shù)式是( 。
A、2k+1
B、2(2k+1)
C、
2k+1
k+1
D、
2k+3
k+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2、用數(shù)學(xué)歸納法證明“當(dāng)n為正奇數(shù)時,xn+yn能被x+y整除”的第二步是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明(n+1)(n+2)(n+3)…(n+n)=2n•1•2•3•…•(2n-1)(n∈N*),則當(dāng)n=k+1時,左邊的式子是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明“(n+1)(n+2)…(n+n)=2n•1•2•…•(2n-1)”(n∈N+)時,從“n=k到n=k+1”時,左邊應(yīng)增添的式子是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•濟(jì)寧一模)給出下列四個命題:
①命題:“設(shè)a,b∈R,若ab=0,則a=0或b=0”的否命題是“設(shè)a,b∈R,若ab≠0,則a≠0且b≠0”; 
②將函數(shù)y=
2
sin(2x+
π
4
)的圖象上所有點(diǎn)的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),再向右平移
π
4
個單位長度,得到函數(shù)y=
2
cosx的圖象; 
③用數(shù)學(xué)歸納法證明(n+1)(n+2)…(n+n)=2n•1•2•3…(2n-1)(n∈N*)時,從“k”到“k+1”的證明,左邊需增添的一個因式是2(2k+1); 
④函數(shù)f(x)=ex-x-1(x∈R)有兩個零點(diǎn).
其中所有真命題的序號是
①③
①③

查看答案和解析>>

同步練習(xí)冊答案