【題目】已知集合M是滿足下列性質(zhì)的函數(shù)的全體;在定義域內(nèi)存在實(shí)數(shù)t,使得.
(1)判斷是否屬于集合M,并說(shuō)明理由;
(2)若屬于集合M,求實(shí)數(shù)a的取值范圍;
(3)若,求證:對(duì)任意實(shí)數(shù)b,都有.
【答案】(1)不屬于,理由詳見(jiàn)解析;(2);(3)詳見(jiàn)解析.
【解析】
(1)利用f(x)=3x+2,通過(guò)f(t+2)=f(t)+f(2)推出方程無(wú)解,說(shuō)明f(x)=3x+2不屬于集合M;
(2)由屬于集合M,推出有實(shí)解,即(a﹣6)x2+4ax+6(a﹣2)=0有實(shí)解,對(duì)參數(shù)分類討論,利用判斷式求解即可;
(3)當(dāng)f(x)=2x+bx2時(shí),方程f(x+2)=f(x)+f(2)3×2x+4bx﹣4=0,令g(x)=3×2x+4bx﹣4,則g(x)在R上的圖象是連續(xù)的,當(dāng)b≥0時(shí),當(dāng)b<0時(shí),判斷函數(shù)是否有零點(diǎn),證明對(duì)任意實(shí)數(shù)b,都有f(x)∈M.
解:(1)當(dāng)時(shí),方程
此方程無(wú)解,所以不存在實(shí)數(shù)t,使得,
故不屬于集合M﹒
(2)由,屬于集合M,可得
方程有實(shí)解
有實(shí)解有實(shí)解,
若時(shí),上述方程有實(shí)解;
若時(shí),有,解得,
故所求a的取值范圍是.
(3)當(dāng)時(shí),方程
,
,則在上的圖像是連續(xù)的,
當(dāng)時(shí),,,故在內(nèi)至少有一個(gè)零點(diǎn)
當(dāng)時(shí),,,故在內(nèi)至少有一個(gè)零點(diǎn)
故對(duì)任意的實(shí)數(shù)b,在上都有零點(diǎn),即方程總有解,
所以對(duì)任意實(shí)數(shù)b,都有.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿足,則稱為“類函數(shù)”.
(1)已知函數(shù),試判斷是否為“類函數(shù)”?并說(shuō)明理由;
(2)設(shè)是定義在上的“類函數(shù)”,求是實(shí)數(shù)的最小值;
(3)若 為其定義域上的“類函數(shù)”,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】水庫(kù)的蓄水量隨時(shí)間而變化,現(xiàn)用t表示時(shí)間,以月為單位,年初為起點(diǎn)(用t表示第t月份,),根據(jù)歷年數(shù)據(jù),某水庫(kù)的蓄水量V(單位:億立方米)與時(shí)間t的近似函數(shù)關(guān)系為:當(dāng)0<t≤10時(shí),;當(dāng)10<t≤12時(shí),;若2月份該水庫(kù)的蓄水量為33.6億立方米.
(1)求實(shí)數(shù)a的值;
(2)求一年內(nèi)該水庫(kù)的最大蓄水量.
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在處的切線方程;
(2)是否存在非負(fù)整數(shù),使得函數(shù)是單調(diào)函數(shù),若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由;
(3)已知,若存在,使得當(dāng)時(shí),的最小值是,求實(shí)數(shù)的取值范圍.(注:自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿足,則稱為“類函數(shù)”.
(1)已知函數(shù),試判斷是否為“類函數(shù)”?并說(shuō)明理由;
(2)設(shè)是定義在上的“類函數(shù)”,求是實(shí)數(shù)的最小值;
(3)若 為其定義域上的“類函數(shù)”,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù).
(1)當(dāng)時(shí),求函數(shù)的定義域;
(2)若判斷的奇偶性;
(3)是否存在實(shí)數(shù)使函數(shù)在[2,3]遞增,并且最大值為1,若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】大衍數(shù)列,來(lái)源于《乾坤譜》中對(duì)易傳“大衍之?dāng)?shù)五十“的推論.主要用于解釋中國(guó)傳統(tǒng)文化中的太極衍生原理數(shù)列中的每一項(xiàng),都代表太極衍生過(guò)程中,曾經(jīng)經(jīng)歷過(guò)的兩儀數(shù)量總和是中華傳統(tǒng)文化中隱藏著的世界數(shù)學(xué)史上第一道數(shù)列題其規(guī)律是:偶數(shù)項(xiàng)是序號(hào)平方再除以2,奇數(shù)項(xiàng)是序號(hào)平方減1再除以2,其前10項(xiàng)依次是0,2,4,8,12,18,24,32,40,50,…,如圖所示的程序框圖是為了得到大衍數(shù)列的前100項(xiàng)而設(shè)計(jì)的,那么在兩個(gè)判斷框中,可以先后填入( )
A. 是偶數(shù)?,? B. 是奇數(shù)?,?
C. 是偶數(shù)?, ? D. 是奇數(shù)?,?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意,點(diǎn)都在函數(shù)的圖象上.
(1)求,歸納數(shù)列的通項(xiàng)公式(不必證明).
(2)將數(shù)列依次按項(xiàng)、項(xiàng)、項(xiàng)、項(xiàng)、項(xiàng)循環(huán)地分為,,,,各個(gè)括號(hào)內(nèi)各數(shù)之和,設(shè)由這些和按原來(lái)括號(hào)的前后順序構(gòu)成的數(shù)列為,求的值.
(3)設(shè)為數(shù)列的前項(xiàng)積,若不等式對(duì)一切都成立,其中,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),函數(shù).
(1)若,求的反函數(shù);
(2)求函數(shù)的最大值(用表示);
(3)設(shè),若對(duì)任意,恒成立,求的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com