【題目】已知,若方程有2個不同的實根,則實數(shù)的取值范圍是_____(結(jié)果用區(qū)間表示).

【答案】

【解析】

由方程的解與函數(shù)圖象的交點個數(shù)的關(guān)系可得有2個不同的實根等價于的圖象與直線的交點個數(shù)為2,由函數(shù)圖象的性質(zhì)及利用導(dǎo)數(shù)求切線方程可設(shè)過原點的直線與相切與點,由,則此切線方程為,又此直線過原點,則求得,即切線方程為再結(jié)合圖象可得實數(shù)的取值范圍是,得解.

解:由

可得:的圖象關(guān)于直線對稱,

有2個不同的實根等價于的圖象與直線的交點個數(shù)為2,

的圖象與直線的位置關(guān)系如圖所示,

設(shè)過原點的直線與相切與點,

,

則此切線方程為:

又此直線過原點,

則求得,

即切線方程為:,

由圖可知:當(dāng)的圖象與直線的交點個數(shù)為2時,

實數(shù)的取值范圍是,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:若函數(shù)在區(qū)間上的值域為,則稱區(qū)間是函數(shù)完美區(qū)間,另外,定義區(qū)間復(fù)區(qū)間長度,已知函數(shù),則(

A.的一個完美區(qū)間

B.的一個完美區(qū)間

C.的所有完美區(qū)間復(fù)區(qū)間長度的和為

D.的所有完美區(qū)間復(fù)區(qū)間長度的和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心為原點,左焦點為,離心率為,不與坐標(biāo)軸垂直的直線與橢圓交于兩點.

1)若為線段的中點,求直線的方程.

2)求點是直線上一點,點在橢圓上,且滿足,設(shè)直線與直線的斜率分別為,問:是否為定值?若是,請求出的值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位為促進職工業(yè)務(wù)技能提升,對該單位120名職工進行一次業(yè)務(wù)技能測試,測試項目共5項.現(xiàn)從中隨機抽取了10名職工的測試結(jié)果,將它們編號后得到它們的統(tǒng)計結(jié)果如下表(表1)所示(“√”表示測試合格,“×”表示測試不合格).

表1:

編號\測試項目

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

規(guī)定:每項測試合格得5分,不合格得0分.

(1)以抽取的這10名職工合格項的項數(shù)的頻率代替每名職工合格項的項數(shù)的概率.

①設(shè)抽取的這10名職工中,每名職工測試合格的項數(shù)為,根據(jù)上面的測試結(jié)果統(tǒng)計表,列出的分布列,并估計這120名職工的平均得分;

②假設(shè)各名職工的各項測試結(jié)果相互獨立,某科室有5名職工,求這5名職工中至少有4人得分不少于20分的概率;

(2)已知在測試中,測試難度的計算公式為,其中為第項測試難度,為第項合格的人數(shù),為參加測試的總?cè)藬?shù).已知抽取的這10名職工每項測試合格人數(shù)及相應(yīng)的實測難度如下表(表2):

表2:

測試項目

1

2

3

4

5

實測合格人數(shù)

8

8

7

7

2

定義統(tǒng)計量,其中為第項的實測難度,為第項的預(yù)測難度().規(guī)定:若,則稱該次測試的難度預(yù)測合理,否則為不合理,測試前,預(yù)估了每個預(yù)測項目的難度,如下表(表3)所示:

表3:

測試項目

1

2

3

4

5

預(yù)測前預(yù)估難度

0.9

0.8

0.7

0.6

0.4

判斷本次測試的難度預(yù)估是否合理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校在一次期末數(shù)學(xué)測試中,為統(tǒng)計學(xué)生的考試情況,從學(xué)校的2000名學(xué)生中隨機抽取50名學(xué)生的考試成績,被測學(xué)生成績?nèi)拷橛?5分到145分之間(滿分150分),將統(tǒng)計結(jié)果按如下方式分成八組:第一組,,第二組,第八組,,如圖是按上述分組方法得到的頻率分布直方圖的一部分.

(1)求第七組的頻率,并完成頻率分布直方圖;

(2)用樣本數(shù)據(jù)估計該校的2000名學(xué)生這次考試成績的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表該組數(shù)據(jù)平均值);

(3)若從樣本成績屬于第六組和第八組的所有學(xué)生中隨機抽取2名,求他們的分差的絕對值小于10分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸的非負半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求直線的普通方程及曲線的直角坐標(biāo)方程;

(2)設(shè)點,直線與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體中,四邊形為矩形,二面角,,,,.

(1)求證:平面;

(2)為線段上的點,當(dāng)時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓錐(其中為頂點,為底面圓心)的側(cè)面積與底面積的比是,則圓錐與它外接球(即頂點在球面上且底面圓周也在球面上)的體積比為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間和的極值;

(2)對于任意的,都有,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案