已知P為拋物線y2=4x上一個動點,Q為園x2+(y-3)2=1上一個動點,那么點P到點Q的距離與點P到拋物線的準線距離之和的最小值是
 
考點:拋物線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:先根據(jù)拋物線方程求得焦點坐標,根據(jù)圓的方程求得圓心坐標,根據(jù)拋物線的定義可知P到準線的距離等于點P到焦點的距離,進而問題轉(zhuǎn)化為求點P到點Q的距離與點P到拋物線的焦點距離之和的最小值,根據(jù)圖象可知當P,Q,F(xiàn)三點共線時P到點Q的距離與點P到拋物線的焦點距離之和的最小,為圓心到焦點F的距離減去圓的半徑.
解答: 解:拋物線y2=4x的焦點為F(1,0),圓x2+(y-3)2=1的圓心為C(0,3),
根據(jù)拋物線的定義可知點P到準線的距離等于點P到焦點的距離,
進而推斷出當P,Q,F(xiàn)三點共線時P到點Q的距離與點P到拋物線的焦點距離之和的最小為:|FC|-1=
10
-1.
故答案為:
10
-1.
點評:本題主要考查了拋物線的應用.考查了學生轉(zhuǎn)化和化歸,數(shù)形結合等數(shù)學思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在邊長為4的菱形ABCD中,∠DAB=60°.點E、F分別在邊CD、CB上,點E與點C、D不重合,EF⊥AC,EF∩AC=O,AC∩BD=H.沿EF將△CEF折起到△PEF的位置,使得平面PEF⊥平面ABFED.

(Ⅰ)求證:BD⊥平面POA;
(Ⅱ)當PB取得最小值時,請解答以下問題:(提示:設OH=x)
(ⅰ)求四棱錐P-BDEF的體積;
(ⅱ)若點Q在線段AP上,試探究:直線OQ與平面E所成角是否一定大于或等于45°?并說明你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正三角形ABC的三個頂點都在半徑為2的球面上,球心O到平面的ABC距離為1,點D是選段BC的中點,過D作球O的截面,則截面面積的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方體ABCD-A1B1C1D1的棱長為2,線段EF,GH分別在AB,CC1上移動,且EF+GH=
1
2
,則三棱錐EFGH的體積最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過雙曲線
x2
a2
-
y2
b2
=1(a>0.b>0)
的有焦點F2作垂直于實軸的弦QP,F(xiàn)1是左焦點,若∠PF1Q=90°,則離心率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=cos2x-2sinx的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

OA
=(4,8),
OB
=(-7,-2),則
1
3
AB
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在空間直角坐標系下,點P(x,y,z)滿足x2+y2+z2=1,則動點P表示的空間幾何體的表面積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知半橢圓
y2
a2
+
x2
b2
=1(y≥0,a>b>0)和半圓x2+y2=b2(y≤0)組成的曲線C如圖所示.曲線C交x軸于點A,B,交y軸于點G,H,點M是半圓上異于A,B的任意一點,當點M位于點(
6
3
,-
3
3
)時,△AGM的面積最大,則半橢圓的離心率為
 

查看答案和解析>>

同步練習冊答案