若y2=2px的焦點(diǎn)與
x2
6
+
y2
2
=1的左焦點(diǎn)重合,則p=( 。
A、-2B、2C、-4D、4
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專(zhuān)題:計(jì)算題,圓錐曲線(xiàn)的定義、性質(zhì)與方程
分析:先根據(jù)橢的標(biāo)準(zhǔn)圓方程求出橢圓的左焦點(diǎn)坐標(biāo),再結(jié)合題中條件可得拋物線(xiàn)的焦點(diǎn)坐標(biāo)為(-2,0),進(jìn)而根據(jù)拋物線(xiàn)的有關(guān)性質(zhì)求出p的值.
解答: 解:由橢圓的方程
x2
6
+
y2
2
=1可得:a2=6,b2=2,
∴c2=4,即c=2,
∴橢圓的左焦點(diǎn)坐標(biāo)為(-2,0)
∵拋物線(xiàn)y2=2px的焦點(diǎn)與橢圓
x2
6
+
y2
2
=1的左焦點(diǎn)重合,
∴拋物線(xiàn)y2=2px的焦點(diǎn)為(-2,0),即
p
2
=-2,
∴p=-4.
故選:C.
點(diǎn)評(píng):本題主要考查橢圓的性質(zhì)與拋物線(xiàn)的有關(guān)性質(zhì),解決此題的關(guān)鍵是熟練掌握橢圓與拋物線(xiàn)的焦點(diǎn)坐標(biāo)的求法,此題屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿(mǎn)足約束條件
x-y+3≥0
-1≤x≤1
y≥1
,則z=x+y的最大值是( 。
A、5B、2C、0D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線(xiàn)l的方向向量為(1,3),直線(xiàn)m⊥l,則直線(xiàn)m的斜率為( 。
A、
1
3
B、-
1
3
C、3
D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(2,m),
b
=(-1,3m),若(2
a
-
b
)⊥
a
,則|
a
|=( 。
A、4
B、
3
C、
14
D、2
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an},滿(mǎn)足a2=5,a5=2,則公差d=(  )
A、-1
B、-
3
4
C、
3
4
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正三棱柱ABC-A1B1C1中,AB=2,AA1=
3
,則三棱錐C-ABC1的體積為( 。
A、1
B、3
C、
2
3
3
D、
2
9
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P在曲線(xiàn)f(x)=x4-x上,曲線(xiàn)在點(diǎn)P處的切線(xiàn)平行于直線(xiàn)3x-y=0,則點(diǎn)P的坐標(biāo)為( 。
A、(0,0)
B、(1,1)
C、(0,1)
D、(1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平行四邊形ABCD中,A(1,1),
AB
=(6,0),點(diǎn)M是線(xiàn)段AB的中點(diǎn),線(xiàn)段CM與BD交于點(diǎn)P
(Ⅰ)若
AD
=(3,5),求點(diǎn)C的坐標(biāo);
(Ⅱ)設(shè)點(diǎn)P的坐標(biāo)是(x,y),當(dāng)|
AB
|=|
AD
|時(shí),求點(diǎn)P(x,y)所滿(mǎn)足的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a∈R,函數(shù)f(x)=
1
3
x3+
1
2
ax2-(a+1)x.
(Ⅰ)若a=0,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)x∈[-1,2]時(shí),-1≤f(x)≤
2
3
恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案