【題目】甲、乙兩校分別有120名、100名學(xué)生參加了某培訓(xùn)機構(gòu)組織的自主招生培訓(xùn),考試結(jié)果出來以后,培訓(xùn)機構(gòu)為了進一步了解各校所培訓(xùn)學(xué)生通過自主招生的情況,從甲校隨機抽取60人,從乙校隨機抽取50人進行分析,相關(guān)數(shù)據(jù)如下表.
(1)完成上面列聯(lián)表,并據(jù)此判斷是否有99%的把握認為自主招生通過情況與學(xué)生所在學(xué)校有關(guān);
(2)現(xiàn)從甲、乙兩校通過的學(xué)生中采取分層抽樣的方法抽取5人,再從所抽取的5人種隨機抽取2人,求2人全部來自于乙校的概率.
參考公式:.
參考數(shù)據(jù):
【答案】(1)見解析;(2)
【解析】
(1)由題可得表格,再計算,與6.635比較大小即可得到答案;
(2)通過分層抽樣,可得甲乙丙校對應(yīng)人數(shù),從而通過古典概型公式可得概率.
(1) 列聯(lián)表如下:
通過人數(shù) | 未通過人數(shù) | 總計 | |
甲校 | 20 | 40 | 60 |
乙校 | 30 | 20 | 50 |
總計 | 50 | 60 | 110 |
由上表數(shù)據(jù)算得:
所以有99%的把握認為學(xué)生的自主招生通過情況與所在學(xué)校有關(guān)
(2) 按照分層抽樣的方法,應(yīng)從甲校中抽2 人,乙校中抽3人,甲校2 人記為,乙校3人記為,從5 人中任取2人共有10種情況,其中2 人全部來自乙校的情況有共3種,所以所求事件的概率為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修:不等式選講
已知函數(shù)f(x)=|2x+3|+|2x﹣1|.
(Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若關(guān)于x的不等式f(x)≤|3m+1|有解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)。
(1)求函數(shù)的單調(diào)減區(qū)間;
(2)若函數(shù)在區(qū)間上的極大值為8,求在區(qū)間上的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ln(ax2+x+6).
(1)若a=﹣1,求f(x)的定義域,并討論f(x)的單調(diào)性;
(2)若函數(shù)f(x)的定義域為R,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長為4,動點E,F在棱上,動點P,Q分別在棱AD,CD上。若,,,(大于零),則四面體PEFQ的體積
A.與都有關(guān)B.與m有關(guān),與無關(guān)
C.與p有關(guān),與無關(guān)D.與π有關(guān),與無關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線頂點在原點,焦點在x軸上,且過點(4,4),焦點為F.
(1)求拋物線的焦點坐標和標準方程;
(2)P是拋物線上一動點,M是PF的中點,求M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),g(x)=f(x)﹣3.
(1)判斷并證明函數(shù)g(x)的奇偶性;
(2)判斷并證明函數(shù)g(x)在(1,+∞)上的單調(diào)性;
(3)若f(m2﹣2m+7)≥f(2m2﹣4m+4)成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)(是自然對數(shù)的底數(shù))
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間內(nèi)無零點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某機構(gòu)為了解某地區(qū)中學(xué)生在校月消費情況,隨機抽取了 100名中學(xué)生進行調(diào)查.如圖是根據(jù)調(diào)査的結(jié)果繪制的學(xué)生在校月消費金額的頻率分布直方圖.已知三個金額段的學(xué)生人數(shù)成等差數(shù)列,將月消費金額不低于550元的學(xué)生稱為“高消費群”.
(1)求的值,并求這100名學(xué)生月消費金額的樣本平均數(shù) (同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認為“高消費群”與性別有關(guān)?
附: (其中樣本容量)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com