【題目】某公司的研發(fā)團(tuán)隊(duì),可以進(jìn)行A、B、C三種新產(chǎn)品的研發(fā),研發(fā)成功的概率分別為P(A)= ,P(B)= ,P(C)= ,三個(gè)產(chǎn)品的研發(fā)相互獨(dú)立.
(1)求該公司恰有兩個(gè)產(chǎn)品研發(fā)成功的概率;
(2)已知A、B、C三種產(chǎn)品研發(fā)成功后帶來的產(chǎn)品收益(單位:萬元)分別為1000、2000、1100,為了收益最大化,公司從中選擇兩個(gè)產(chǎn)品研發(fā),請(qǐng)你從數(shù)學(xué)期望的角度來考慮應(yīng)該研發(fā)哪兩個(gè)產(chǎn)品?
【答案】
(1)解:設(shè)A,B,C研發(fā)成功分別記為事件A,B,C,且相互獨(dú)立;
記事件恰有兩個(gè)產(chǎn)品研發(fā)成功為D,
則P(D)=P(A)P(B)P( )+P(A)P(C) +P(B)P(C)P( )
= × × + × × + × ×
=
(2)解:選擇A、B兩種產(chǎn)品研發(fā)時(shí)為隨機(jī)事件X,則X的可能取值為0,1000,2000,3000,
則P(X=0)=P( )P( )= × = ,
P(X=1000)=P(A)P( )= × = ,
P(X=2000)=P( )P(B)= × = ,
(X=3000)=P(A)P(B)= × = ,
則X的分布列為;
X | 0 | 1000 | 2000 | 3000 |
P |
|
|
|
|
X的數(shù)學(xué)期望為E(X)=0× +1000× +2000× +3000× = ;
選擇A、C兩種產(chǎn)品研發(fā)時(shí)為隨機(jī)事件Y,則Y的可能取值為0,1000,1100,2100,
則P(Y=0)=P( )P( )= × = ,
P(Y=1000)=P(A)P( )= × = ,
P(X=1100)=P( )P(C)= × = ,
P(X=2100)=P(A)P(C)= × = ,
則Y的分布列為;
Y | 0 | 1000 | 1100 | 2100 |
P |
|
|
|
|
Y的數(shù)學(xué)期望為E(Y)=0× +1000× +1100× +2100× =1330(萬元);
選擇A、B兩種產(chǎn)品研發(fā)時(shí)為隨機(jī)事件Z,則Z的可能取值為0,2000,1100,3100,
則P(Z=0)=P( )P( )= × = ,
P(Z=2000)=P(B)P( )= × = ,
P(X=1100)=P( )P(C)= × = ,
P(X=3100)=P(B)P(C)= × = ,
則Z的分布列為;
Z | 0 | 2000 | 1100 | 3100 |
P |
|
|
|
|
Z的數(shù)學(xué)期望為E(Z)=0× +2000× +1100× +3100× = (萬元);
比較知E(Z)最大,即研發(fā)B、C兩種產(chǎn)品帶來的產(chǎn)品收益最大
【解析】(1)設(shè)A,B,C研發(fā)成功分別記為事件A,B,C,且相互獨(dú)立;計(jì)算恰有兩個(gè)產(chǎn)品研發(fā)成功的概率即可;(2)選擇A、B和A、C,B、C對(duì)應(yīng)的兩種產(chǎn)品研發(fā)的分布列與數(shù)學(xué)期望,比較得出結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:參數(shù)方程與極坐標(biāo)系]
以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,已知直線l的參數(shù)方程為 ,(t為參數(shù),0<θ<π),曲線C的極坐標(biāo)方程為ρsin2θ﹣2cosθ=0.
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),當(dāng)θ變化時(shí),求|AB|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)甲,乙兩種芯片,其質(zhì)量按測(cè)試指標(biāo)劃分為:指標(biāo)大于或等于82為合格品,小于82為次品.現(xiàn)隨機(jī)抽取這兩種芯片各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如表:
測(cè)試指標(biāo) | [70,76) | [76,82) | [82,88) | [88,94) | [94,100] |
芯片甲 | 8 | 12 | 40 | 32 | 8 |
芯片乙 | 7 | 18 | 40 | 29 | 6 |
(Ⅰ)試分別估計(jì)芯片甲,芯片乙為合格品的概率;
(Ⅱ)生產(chǎn)一件芯片甲,若是合格品可盈利40元,若是次品則虧損5元;生產(chǎn)一件芯片乙,若是合格品可盈利50元,若是次品則虧損10元.在(I)的前提下,
(i)記X為生產(chǎn)1件芯片甲和1件芯片乙所得的總利潤(rùn),求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(ii)求生產(chǎn)5件芯片乙所獲得的利潤(rùn)不少于140元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】連續(xù)投擲兩次骰子得到的點(diǎn)數(shù)分別為m,n,向量 與向量 的夾角記為α,則α 的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣a|+|x﹣1|.
(1)當(dāng)a=3時(shí),求不等式f(x)≥2的解集;
(2)若f(x)≥5﹣x對(duì)x∈R恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|+|2x﹣a|(a∈R).
(1)若f(1)<11,求a的取值范圍;
(2)若a∈R,f(x)≥x2﹣x﹣3恒成立,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,△PAD為正三角形,四邊形ABCD為直角梯形,CD∥AB,BC⊥AB,平面PAD⊥平面ABCD,點(diǎn)E、F分別為AD、CP的中點(diǎn),AD=AB=2CD=2.
(Ⅰ)證明:直線EF∥平面PAB;
(Ⅱ)求直線EF與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ,數(shù)列 的前n項(xiàng)和為Sn , 數(shù)列{bn}的通項(xiàng)公式為bn=n﹣8,則bnSn的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,已知直線l的參數(shù)方程為 ,曲線C的極坐標(biāo)方程為
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線A與曲線C相交于A,B兩點(diǎn),已知定點(diǎn)P( ,0),當(dāng)α= 時(shí),求|PA|+|PB|的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com