【題目】重慶市推行“共享吉利博瑞車”服務(wù),租用該車按行駛里程加用車時間收費(fèi),標(biāo)準(zhǔn)是“1元/公里0.2元/分鐘”.剛在重慶參加工作的小劉擬租用“共享吉利博瑞車”上下班,同單位的鄰居老李告訴他:“上下班往返總路程雖然只有10公里,但偶爾開車上下班總共也需花費(fèi)大約1小時”,并將自己近50天的往返開車的花費(fèi)時間情況統(tǒng)計如表:

將老李統(tǒng)計的各時間段頻率視為相應(yīng)概率,假定往返的路程不變,而且每次路上開車花費(fèi)時間視為用車時間.

(1)試估計小劉每天平均支付的租車費(fèi)用(每個時間段以中點(diǎn)時間計算);

(2)小劉認(rèn)為只要上下班開車總用時不超過45分鐘,租用“共享吉利博瑞車”為他該日的“最優(yōu)選擇”,小劉擬租用該車上下班2天,設(shè)其中有天為“最優(yōu)選擇”,求的分布列和數(shù)學(xué)期望.

【答案】(1)16.96,(2)

【解析】試題分析:(1)由題可得如下用車花費(fèi)與相應(yīng)頻率的數(shù)表,利用平均數(shù)的計算公式,求得平均數(shù),即可估計平均每天的用車費(fèi)用;

(2)由題意,確定可能的取值,根據(jù)二項分布求解取每個值的概率,列出分布列,利用二項分布的期望公式,即可求解數(shù)學(xué)期望.

試題解析:

(1)由題可得如下用車花費(fèi)與相應(yīng)頻率的數(shù)表:

估計小劉平均每天用車費(fèi)用為

(2)可能的取值為0,1,2,

用時不超過45分鐘的概率為0.8, ,

, , ,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)用五點(diǎn)法畫出這個函數(shù)在一個周期內(nèi)的圖像;(必須列表)

2)求它的振幅、周期、初相、對稱軸方程;

3)說明此函數(shù)圖象可由上的圖象經(jīng)過怎樣的變換得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四樓錐中,平面平面,底面為梯形. ,且均為正三角形. 的中點(diǎn)重心, 相交于點(diǎn).

(1)求證: 平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,甲船由A島出發(fā)向北偏東45°的方向作勻速直線航行,速度為nmile/h,在甲船從A島出發(fā)的同時,乙船從A島正南nmile處的B島出發(fā),朝北偏東30°的方向作勻速直線航行,速度為nmile/h.

1)若兩船能相遇,求m;

2)當(dāng)時,兩船出發(fā)2小時后,求兩船之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線.C與直線相切于點(diǎn)A,且點(diǎn)A的縱坐標(biāo)為,圓心C在直線.

1)求直線之間的距離;

2)求圓C的標(biāo)準(zhǔn)方程;

3)若直線經(jīng)過點(diǎn)且與圓C交于兩點(diǎn),當(dāng)△CPQ的面積最大時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1+=1ab0)的右焦點(diǎn)F1,0),右準(zhǔn)線lx=4.圓C2x2+y2=b2A、B為橢圓上不同的兩點(diǎn),AB中點(diǎn)為M

1)求橢圓C1的方程;

2)若直線ABF點(diǎn),直線OMlN點(diǎn),求證:NFAB

3)若直線AB與圓C2相切,求原點(diǎn)OAB中垂線的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為1的正方體中,點(diǎn)E是棱AB上的動點(diǎn).

1)求證: ;

2)若直線與平面所成的角是45,請你確定點(diǎn)E的位置,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來鄭州空氣污染較為嚴(yán)重,現(xiàn)隨機(jī)抽取一年(365天)內(nèi)100天的空氣中指數(shù)的監(jiān)測數(shù)據(jù),統(tǒng)計結(jié)果如下:

空氣質(zhì)量

優(yōu)

輕微污染

輕度污染

中度污染

中度重污染

重度污染

天數(shù)

4

13

18

30

9

11

15

記某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失為(單位:元),指數(shù)為.當(dāng)在區(qū)間內(nèi)時對企業(yè)沒有造成經(jīng)濟(jì)損失;當(dāng)在區(qū)間內(nèi)時對企業(yè)造成經(jīng)濟(jì)損失成直線模型(當(dāng)指數(shù)為150時造成的經(jīng)濟(jì)損失為500元,當(dāng)指數(shù)為200時,造成的經(jīng)濟(jì)損失為700元);當(dāng)指數(shù)大于300時造成的經(jīng)濟(jì)損失為2000元.

(1)試寫出的表達(dá)式;

(2)試估計在本年內(nèi)隨機(jī)抽取一天,該天經(jīng)濟(jì)損失大于500元且不超過900元的概率;

(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面列聯(lián)表,并判斷是否有的把握認(rèn)為鄭州市本年度空氣重度污染與供暖有關(guān)?

附:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.32

2.07

2.70

3.74

5.02

6.63

7.87

10.828

,其中

非重度污染

重度污染

合計

供暖季

非供暖季

合計

100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線是中心在原點(diǎn),焦點(diǎn)在軸上的雙曲線的右支,它的離心率剛好是其對應(yīng)雙曲線的實(shí)軸長,且一條漸近線方程是,線段是過曲線右焦點(diǎn)的一條弦,是弦的中點(diǎn)。

(1)求曲線的方程;

(2)求點(diǎn)軸距離的最小值;

(3)若作出直線,使點(diǎn)在直線上的射影滿足.當(dāng)點(diǎn)在曲線上運(yùn)動時,求的取值范圍.

(參考公式:若為雙曲線右支上的點(diǎn),為右焦點(diǎn),則.(為離心率))

查看答案和解析>>

同步練習(xí)冊答案