【題目】平面直角坐標(biāo)系中,已知點,直線,動點到點的距離比它到直線的距離小2.
(1)求點的軌跡的方程;
(2)設(shè)斜率為2的直線與曲線交于、兩點(點在第一象限),過點作軸的平行線,問在坐標(biāo)平面中是否存在定點,使直線交直線于點,且恒成立?若存在,求出點的坐標(biāo),若不存在,說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為(α為參數(shù)).以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為,().
(1)求曲線C的極坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于不同的兩點,,指出的范圍,并求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】超級細(xì)菌是一種耐藥性細(xì)菌,產(chǎn)生超級細(xì)菌的主要原因是用于抵抗細(xì)菌侵蝕的藥物越來越多,但是由于濫用抗生素的現(xiàn)象不斷的發(fā)生,很多致病菌也對相應(yīng)的抗生素產(chǎn)生了耐藥性,更可怕的是,抗生素藥物對它起不到什么作用,病人會因為感染而引起可怕的炎癥,高燒,痙攣,昏迷甚至死亡.某藥物研究所為篩查某種超級細(xì)菌,需要檢驗血液是否為陽性,現(xiàn)有n()份血液樣本,每個樣本取到的可能性相等,有以下兩種檢驗方式:(1)逐份檢驗,則需要檢驗n次;(2)混合檢驗,將其中k(且)份血液樣本分別取樣混合在一起檢驗,若檢驗結(jié)果為陰性,則這份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了;如果檢驗結(jié)果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份血液再逐份檢驗,此時這k份血液的檢驗次數(shù)總共為次.假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是獨立的,且每份樣本是陽性結(jié)果的概率為p().現(xiàn)取其中k(且)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.
(1)運用概率統(tǒng)計的知識,若,試求P關(guān)于k的函數(shù)關(guān)系式;
(2)若P與抗生素計量相關(guān),其中,,…,()是不同的正實數(shù),滿足,對任意的(),都有.
(i)證明:為等比數(shù)列;
(ii)當(dāng)時,采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)期望值比逐份檢驗的總次數(shù)期望值更少,求k的最大值.
參考數(shù)據(jù):,,,,,
,,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).(為自然對數(shù)的底數(shù))
(1)當(dāng)時,設(shè),求函數(shù)在上的最值;
(2)當(dāng)時,證明:,其中(表示中較小的數(shù).)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,正確的是( )
A.若輸入a,b,c的值依次為1,2,4,則輸出的值為5
B.若輸入a,b,c的值依次為2,3,5,則輸出的值為7
C.若輸入a,b,c的值依次為3,4,5,則輸出的值為15
D.若輸入a,b,c的值依次為2,3,4,則輸出的值為10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓 的左右焦點分別為的、,離心率為;過拋物線焦點的直線交拋物線于、兩點,當(dāng)時, 點在軸上的射影為。連結(jié)并延長分別交于、兩點,連接; 與的面積分別記為, ,設(shè).
(Ⅰ)求橢圓和拋物線的方程;
(Ⅱ)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,,為自然對數(shù)的底數(shù).
若,,①若函數(shù)單調(diào)遞增,求實數(shù)的取值范圍;②若對任意,恒成立,求實數(shù)的取值范圍.
若,且存在兩個極值點,,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟的快速增長、規(guī)模的迅速擴張以及人民生活水平的逐漸提高,日益劇增的垃圾給城市的綠色發(fā)展帶來了巨大的壓力.相關(guān)部門在有5萬居民的光明社區(qū)采用分層抽樣方法得到年內(nèi)家庭人均與人均垃圾清運量的統(tǒng)計數(shù)據(jù)如下表:
人均(萬元/人) | 3 | 6 | 9 | 12 | 15 |
人均垃圾清運量(噸/人) | 0.13 | 0.23 | 0.31 | 0.41 | 0.52 |
(1)已知變量與之間存在線性相關(guān)關(guān)系,求出其回歸直線方程;
(2)隨著垃圾分類的推進,燃燒垃圾發(fā)電的熱值大幅上升,平均每噸垃圾可折算成上網(wǎng)電量200千瓦時,如圖是光明社區(qū)年內(nèi)家庭人均的頻率分布直方圖,請補全的缺失部分,并利用(1)的結(jié)果,估計整個光明社區(qū)年內(nèi)垃圾可折算成的總上網(wǎng)電量.
參考公式]回歸方程,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com