【題目】在平面直角坐標系中,曲線C的參數(shù)方程為α為參數(shù)).以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為,(.

1)求曲線C的極坐標方程;

2)設(shè)直線l與曲線C相交于不同的兩點,,指出的范圍,并求的取值范圍.

【答案】1;(2.

【解析】

(1)消去參數(shù)即可得曲線C的直角坐標方程,再利用代入化簡即可.

(2)根據(jù)直線與圓的位置關(guān)系可得,再根據(jù)極坐標的幾何意義將代入曲線的極坐標方程,化簡根據(jù)韋達定理以及輔助角公式求解即可.

1)將曲線C的參數(shù)方程,消去參數(shù),

.

代入上式,

.

2)依題意,因為圓心到極點的傾斜角為,

過極點圓的切線和極點與圓心連線的直線夾角為,

,將代入曲線的極坐標方程,

.

設(shè),,則, .

所以

.

因為,所以,

,

所以的取值范圍為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面α平面βlA,Cα內(nèi)不同的兩點,BDβ內(nèi)不同的兩點,且AB,CD直線l,M,N分別是線段AB,CD的中點.下列判斷正確的是( 。

A.ABCD,則MNl

B.M,N重合,則ACl

C.ABCD相交,且ACl,則BD可以與l相交

D.ABCD是異面直線,則MN不可能與l平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,側(cè)面為等邊三角形,且垂直于底面, ,分別是的中點.

1)證明:平面平面;

2)已知點在棱上且,求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+lnx(a∈R).

(1)當a=時,求f(x)在區(qū)間[1e]上的最大值和最小值;

(2)如果函數(shù)g(x),f1x),f2(x),在公共定義域D上,滿足f1x)<gx)<f2(x),那么就稱g(x)為f1x),f2(x)的“活動函數(shù)”.已知函數(shù). 。若在區(qū)間(1,+∞)上,函數(shù)f(x)是f1x),f2(x)的“活動函數(shù)”,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,平面ABCD,,,.

1)證明:

2)求二面角的余弦值;

3)設(shè)Q為線段PD上的點,且直線AQ和平面PAC所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是正方形,點在以為直徑的半圓弧上(不與,重合),為線段的中點,現(xiàn)將正方形沿折起,使得平面平面.

1)證明:平面.

2)若,當三棱錐的體積最大時,求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠在制造產(chǎn)品時需要用到長度為698mmA型和長度為518mmB型兩種鋼管,工廠利用長度為4000mm的鋼管原材料,裁剪成若干A型和B型鋼管。假設(shè)裁剪時損耗忽略不計,裁剪后所剩廢料與原材料的百分比稱為廢料率.

1)有兩種裁剪方案的廢料率小于4.5%,請說明這兩種方案并計算它們的廢料率;

2)工廠現(xiàn)有100根原材料鋼管,一根A型和一根B型鋼管為一套毛胚。按(1)中的方案裁剪,最多可裁剪多少套毛胚?最終的廢料率為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】當今世界科技迅猛發(fā)展,信息日新月異.為增強全民科技意識,提高公眾科學素養(yǎng),某市圖書館開展了以“親近科技、暢想未來”為主題的系列活動,并對不同年齡借閱者對科技類圖書的情況進行了調(diào)查.該圖書館從只借閱了一本圖書的借閱者中隨機抽取100名,數(shù)據(jù)統(tǒng)計如表:

借閱科技類圖書(人)

借閱非科技類圖書(人)

年齡不超過50

20

25

年齡大于50

10

45

1)是否有99%的把握認為年齡與借閱科技類圖書有關(guān)?

2)該圖書館為了鼓勵市民借閱科技類圖書,規(guī)定市民每借閱一本科技類圖書獎勵積分2分,每借閱一本非科技類圖書獎勵積分1分,積分累計一定數(shù)量可以用積分換購自己喜愛的圖書.用表中的樣本頻率作為概率的估計值.

i)現(xiàn)有3名借閱者每人借閱一本圖書,記此3人增加的積分總和為隨機變量ξ,求ξ的分布列和數(shù)學期望;

ii)現(xiàn)從只借閱一本圖書的借閱者中選取16人,則借閱科技類圖書最有可能的人數(shù)是多少?

附:K2,其中na+b+c+d

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,已知點,直線,動點到點的距離比它到直線的距離小2.

1)求點的軌跡的方程;

2)設(shè)斜率為2的直線與曲線交于、兩點(點在第一象限),過點軸的平行線,問在坐標平面中是否存在定點,使直線交直線于點,且恒成立?若存在,求出點的坐標,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案