已知圓C的圓心與點(diǎn)M(1,-1)關(guān)于直線x-y+1=0對(duì)稱,并且圓C與x-y+1=0相切,則圓C的方程為
 
考點(diǎn):圓的切線方程
專題:計(jì)算題,直線與圓
分析:先求過M點(diǎn),與x-y+1=0垂直的直線方程,再求兩條直線的交點(diǎn),求出對(duì)稱圓的圓心坐標(biāo),再求半徑,可得圓的方程.
解答: 解:過M點(diǎn)與x-y+1=0垂直的直線方程;x+y=0,它和x-y+1=0的交點(diǎn)是(
1
2
,-
1
2
)則圓C的圓心(0,0),
圓C與x-y+1=0相切,半徑是
1
2
,所求圓C的方程為x2+y2=
1
2

故答案為:x2+y2=
1
2
點(diǎn)評(píng):本題考查直線與圓的位置關(guān)系,對(duì)稱問題,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=-an-(
1
2
n-1+2(n∈N*),數(shù)列{bn}滿足bn=2nan
(Ⅰ)求證數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=log2
n
an
,數(shù)列{
2
cncn+2
}的前n項(xiàng)和為Tn,求滿足Tn
25
21
(n∈N*)的n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將正偶數(shù)排列如圖所示,其中第i行第j個(gè)數(shù)表示aij(i∈N*).例如a32=10,若
aij=2014,則i+j=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={(x,y)|y=f(x)},若對(duì)于任意實(shí)數(shù)(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“垂直對(duì)點(diǎn)集”,給出下列四個(gè)集合:
①M(fèi)={(x,y)|y=-
1
x
}    ②M={(x,y)|y=x2-1}
③M={(x,y)|y=ex-2}   ④M={(x,y)|y=cosx}
其中是“垂直對(duì)點(diǎn)集”的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a,b,c是正實(shí)數(shù),u=
c
a+2b
+
a
b+2c
+
b
c+2a
,則u的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線4x2-y2=4的漸近線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(
1
x
)=x+
1+x2
(x<0),則函數(shù)f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2sinα,
1
3
),
b
=(2,cosα)且
a
b
,則cos2(α+
π
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線x2+
y2
m
=1的實(shí)軸長(zhǎng)是虛軸長(zhǎng)的2倍,則m=( 。
A、-
1
4
B、-
1
2
C、-2
D、-4

查看答案和解析>>

同步練習(xí)冊(cè)答案