已知集合A={1,0,2x-1},且x2∈A,求實(shí)數(shù)x及集合A.
考點(diǎn):元素與集合關(guān)系的判斷
專題:集合
分析:由題意,令x2=1、0、2x-1時(shí),求出x的值,驗(yàn)證集合A是否滿足題意即可.
解答: 解:∵集合A={1,0,2x-1},且x2∈A,
∴①當(dāng)x2=1時(shí),x=1或-1,
∵x=1時(shí),2x-1=1,不合題意,舍去,
x=-1時(shí),2x-1=-3,滿足題意;
②當(dāng)x2=0時(shí),x=0,此時(shí)2x-1=-1,滿足題意;
③當(dāng)x2=2x-1時(shí),x=1,不滿足題意,舍去;
綜上,x=-1時(shí),集合A={1,0,-3};
x=0時(shí),集合A={1,0,-1}.
點(diǎn)評(píng):本題考查了集合的應(yīng)用問題,解題時(shí)應(yīng)利用分類討論的方法,令x2=1、0、2x-1,求出x的值,驗(yàn)證集合A是否成立,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=-3x2-12x+1,x∈(-∞,-2),判斷該函數(shù)的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為菱形,點(diǎn)F為側(cè)棱PC上一點(diǎn).
(1)若PF=FC,求證:PA∥平面BDF;
(2)若BF⊥PC,求證:平面BDF⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD∥BC,AB⊥AD,AC與BD交于點(diǎn)O,PA=3,AD=2,AB=2
3
,BC=6.
(Ⅰ)證明:BD⊥平面PAC;
(Ⅱ)求直線PO與平面PAB所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,C是以AB為直徑的圓O上異于A,B的點(diǎn),平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F(xiàn) 分別是PC,PB的中點(diǎn),記平面AEF與平面ABC的交線為直線l.
(Ⅰ)求證:直線l⊥平面PAC;
(Ⅱ)直線l上是否存在點(diǎn)Q,使直線PQ分別與平面AEF、直線EF所成的角互余?若存在,求出|AQ|的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直三棱柱ABC-A1B1C1中,AB⊥BC,BC=
2
,BB1=2,AC1與A1C交于一點(diǎn)P,延長B1B到D,使得BD=AB,連接DC,DA,得到如圖所示幾何體.
(Ⅰ)若AB=1,求證:BP∥平面ACD,
(Ⅱ)若直線CA1與平面BCC1B1所成的角為30°,求二面角D-AC-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓T:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0).
(Ⅰ)若橢圓T的離心率為
5
3
,過焦點(diǎn)且垂直于z軸的直線被橢圓截得弦長為
8
3

①求橢圓方程;
②過點(diǎn)P(2,1)的兩條直線分別與橢圓F交于點(diǎn)A,C和B,D,若AB∥CD,求直線AB的斜率;
(Ⅱ)設(shè)P(x0,y0)為橢圓T內(nèi)一定點(diǎn)(不在坐標(biāo)軸上),過點(diǎn)P的兩條直線分別與橢圓T交于點(diǎn)A,C和B,D,且AB∥CD,類比(Ⅰ)②直接寫出直線T的斜率.(不必證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠ABC=60°,又PA⊥底面ABCD,E為BC的中點(diǎn).
(1)求證:AD⊥PE;
(2)設(shè)F是PD的中點(diǎn),求證:CF∥平面PAE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x+1|+|x-5|,x∈R.
(1)求不等式f(x)<x+10的解集;
(2)如果關(guān)于x的不等式f(x)≥a-(x-2)2在R上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案