過(guò)拋物線(xiàn)y2=8x的焦點(diǎn)F作傾斜角為135°的直線(xiàn)交拋物線(xiàn)于A,B兩點(diǎn),則弦AB的長(zhǎng)為( 。
A.4B.8C.12D.16
D
由y2=8x得其焦點(diǎn)F(2,0).
則過(guò)拋物線(xiàn)y2=8x的焦點(diǎn)F且傾斜角為135°的直線(xiàn)方程為y=﹣1×(x﹣2),即x+y﹣2=0.
,得x2﹣12x+4=0.
設(shè)A(x1,y1),(x2,y2
則x1+x2=12,x1x2=4.
所以|AB|===
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的右焦點(diǎn)為,短軸的一個(gè)端點(diǎn)的距離等于焦距.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)的直線(xiàn)與橢圓交于不同的兩點(diǎn),,是否存在直線(xiàn),使得△與△的面積比值為?若存在,求出直線(xiàn)的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線(xiàn)相切。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線(xiàn)與橢圓相交于、兩點(diǎn),且,試判斷的面積是否為定值?若為定值,求出定值;若不為定值,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C的對(duì)稱(chēng)中心為原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為,且||=2,
點(diǎn)(1,)在該橢圓上.
(1)求橢圓C的方程;
(2)過(guò)的直線(xiàn)與橢圓C相交于A,B兩點(diǎn),若AB的面積為,求以為圓心且與直線(xiàn)相切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)為拋物線(xiàn)的焦點(diǎn),過(guò)且傾斜角為的直線(xiàn)交,兩點(diǎn),則 ( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直角坐標(biāo)系xOy中,已知圓心在第二象限、半徑為2的圓C與直線(xiàn)y=x相切于坐標(biāo)原點(diǎn)O,橢圓+=1與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程.
(2)試探究圓C上是否存在異于原點(diǎn)的點(diǎn)Q,使Q到橢圓的右焦點(diǎn)F的距離等于線(xiàn)段OF的長(zhǎng),若存在,請(qǐng)求出Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,過(guò)拋物線(xiàn)y2=2px (p>0)的焦點(diǎn)F的直線(xiàn)l交拋物線(xiàn)于點(diǎn)A、B,交其準(zhǔn)線(xiàn)于點(diǎn)C,若|BC|=2|BF|,且|AF|=3,則此拋物線(xiàn)方程為(  )

A.y2=9x           B.y2=6x
C.y2=3x           D.y2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若雙曲線(xiàn)的一條漸近線(xiàn)與圓至多有一個(gè)交點(diǎn),則雙曲線(xiàn)離心
率的取值范圍是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若拋物線(xiàn)的焦點(diǎn)是雙曲線(xiàn)的一個(gè)焦點(diǎn),則正數(shù)等于(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案