【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=﹣
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)若C1上的點(diǎn)P對應(yīng)的參數(shù)為t= ,Q為C2上的動(dòng)點(diǎn),求PQ中點(diǎn)M到直線C3 (α為參數(shù))距離的最小值.

【答案】
(1)解:∵曲線C1的參數(shù)方程為 (t為參數(shù)),

∴曲線C1的普通方程為(x+4)2+(y﹣3)2=1.

∵曲線C2的極坐標(biāo)方程為ρ=﹣ ,

∴ρ2+8ρ2sin2θ=36,∴x2+y2+8y2=36,

∴曲線C2的直角坐標(biāo)方程為 =1


(2)解:∵C1上的點(diǎn)P對應(yīng)的參數(shù)為t= ,∴P(﹣4,4),

∵Q為C2上的動(dòng)點(diǎn),∴Q(6cosθ,2sinθ),

∴PQ中點(diǎn)M(﹣2+3cosθ,2+sinθ),

∵直線C3 (α為參數(shù)),

∴C3為直線x+ y+6 =0,

∴點(diǎn)M到C1的距離:

d= =|4 |,

∴當(dāng)sin( )=﹣1時(shí),PQ中點(diǎn)M到直線C3 (α為參數(shù))距離的最小值:

dmin=3 ﹣1


【解析】(1)曲線C1的參數(shù)方程中利用sin2t+cos2t=1,消去參數(shù)t,能求出曲線C1的普通方程;曲線C2的極坐標(biāo)方程中利用ρ2=x2+y2 , y=ρsinθ,能求出曲線C2的直角坐標(biāo)方程.(2)先求出P(﹣4,4),Q(6cosθ,2sinθ),從而求出PQ中點(diǎn)M的坐標(biāo),再求出直線C3的直角坐標(biāo)方程,由此利用點(diǎn)到直線的距離公式能求出PQ中點(diǎn)M到直線C3的距離的最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 是自然對數(shù)的底數(shù)).

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來我國電子商務(wù)行業(yè)迎來蓬勃發(fā)展的新機(jī)遇相關(guān)管理部門推出了針對電商的商品和服務(wù)的評價(jià)體系.現(xiàn)從評價(jià)系統(tǒng)中選出次成功交易,并對其評價(jià)進(jìn)行統(tǒng)計(jì)愛,商品和服務(wù)評價(jià)的列聯(lián)表如下表:

對服務(wù)好評

對服務(wù)不滿意

合計(jì)

對商品好評

對商品不滿意

合計(jì)

(1)是否可以在犯錯(cuò)誤概率不超過的前提下,認(rèn)為商品好評與服務(wù)好評有關(guān)?

(2)若將頻率視為概率,某人在該購物平臺上進(jìn)行的次購物中,設(shè)對商品和服務(wù)全好評的次數(shù)為隨機(jī)變量,求的數(shù)學(xué)期望.

參考數(shù)據(jù):

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某批發(fā)市場對某種商品的日銷售量(單位:噸)進(jìn)行統(tǒng)計(jì),最近50天的統(tǒng)計(jì)結(jié)果如下:

若以上表中頻率作為概率,且每天的銷售量相互獨(dú)立.

(1)求5天中該種商品恰好有兩天的日銷售量為1.5噸的概率;

(2)已知每噸該商品的銷售利潤為2千元, 表示該種商品某兩天銷售利潤的和(單位:千元),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某天連續(xù)有節(jié)課,其中語文、英語、物理、化學(xué)、生物科各節(jié),數(shù)學(xué)節(jié)在排課時(shí),要求生物課不排第節(jié),數(shù)學(xué)課要相鄰,英語課與數(shù)學(xué)課不相鄰,則不同排法的種數(shù)是( )

A B

C D

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】繼共享單車之后,又一種新型的出行方式------“共享汽車”也開始亮相北上廣深等十余大中城市,一款叫“一度用車”的共享汽車在廣州提供的車型是“奇瑞eQ”,每次租車收費(fèi)按行駛里程加用車時(shí)間,標(biāo)準(zhǔn)是“1元/公里+0.1元/分鐘”,李先生家離上班地點(diǎn)10公里,每天租用共享汽車上下班,由于堵車因素,每次路上開車花費(fèi)的時(shí)間是一個(gè)隨機(jī)變量,根據(jù)一段時(shí)間統(tǒng)計(jì)40次路上開車花費(fèi)時(shí)間在各時(shí)間段內(nèi)的情況如下:

時(shí)間(分鐘)

次數(shù)

8

14

8

8

2

以各時(shí)間段發(fā)生的頻率視為概率,假設(shè)每次路上開車花費(fèi)的時(shí)間視為用車時(shí)間,范圍為分鐘.

(Ⅰ)若李先生上.下班時(shí)租用一次共享汽車路上開車不超過45分鐘,便是所有可選擇的交通工具中的一次最優(yōu)選擇,設(shè)是4次使用共享汽車中最優(yōu)選擇的次數(shù),求的分布列和期望.

(Ⅱ)若李先生每天上下班使用共享汽車2次,一個(gè)月(以20天計(jì)算)平均用車費(fèi)用大約是多少(同一時(shí)段,用該區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, ,且 , , .

)求證:平面平面;

)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 (a>b>0)的左、右焦點(diǎn)分別為F1,F2,點(diǎn)M(0,2)是橢圓的一個(gè)頂點(diǎn),△F1MF2是等腰直角三角形.

(1)求橢圓的方程;

(2)過點(diǎn)M分別作直線MA,MB交橢圓于AB兩點(diǎn),設(shè)兩直線的斜率分別為k1,k2,且k1k2=8,證明:直線AB過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)滿足f(x)=f′(1)ex1﹣f(0)x+ x2;
(1)求f(x)的解析式及單調(diào)區(qū)間;
(2)若 ,求(a+1)b的最大值.

查看答案和解析>>

同步練習(xí)冊答案