經(jīng)過(guò)空間任意三點(diǎn)作平面?zhèn)數(shù)為
 
考點(diǎn):平面的基本性質(zhì)及推論
專題:空間位置關(guān)系與距離
分析:利用平面的基本性質(zhì)求解.
解答: 解:經(jīng)過(guò)空間不共線的三點(diǎn),有且只有一個(gè)平面,
紅過(guò)空間共線的三點(diǎn)有無(wú)數(shù)個(gè)平面,
∴經(jīng)過(guò)空間任意三點(diǎn)作平面?zhèn)數(shù)為一個(gè)或無(wú)數(shù)個(gè).
故答案為:一個(gè)或無(wú)數(shù)個(gè).
點(diǎn)評(píng):本題考查滿足條件的平面?zhèn)數(shù)的判斷,是基礎(chǔ)題,解題時(shí)要注意平面的基本性質(zhì)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=2sin(2ωx-
π
6
)+λ(x∈R)的圖象關(guān)于直線x=π對(duì)稱,其中ω,λ為常數(shù),且ω∈(
1
2
,1)
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過(guò)點(diǎn)(
π
4
,0),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)車(chē)間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此進(jìn)行了4次試驗(yàn).收集數(shù)據(jù)如下:
零件個(gè)數(shù)x(個(gè)) 1 2 3 4
加工時(shí)間y(小時(shí)) 2 3 5 8
(Ⅰ)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;
(Ⅱ)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程
y
=
b
x+
a
;
(Ⅲ)現(xiàn)需生產(chǎn)20件此零件,預(yù)測(cè)需用多長(zhǎng)時(shí)間?
(注:用最小二乘法求線性回歸方程系數(shù)公式
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正項(xiàng)數(shù)列{an}滿足a1=1,a2=2,又?jǐn)?shù)列{
anan+1
}是以
2
2
為公比的等比數(shù)列,則使得不等式
1
a1
+
1
a2
+…+
1
a2n+1
<1280成立的最大整數(shù)n為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“因?yàn)橹笖?shù)函數(shù)y=ax是增函數(shù)(大前提),而y=(
1
3
x是指數(shù)函數(shù)(小前提),所以函數(shù)y=(
1
3
x是增函數(shù)(結(jié)論)”,上面推理的錯(cuò)誤在于
 
錯(cuò)誤導(dǎo)致結(jié)論錯(cuò).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=ex在x=1處的切線的斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形ABCD中,E為邊AB的中點(diǎn),將△ADE沿直線DE翻轉(zhuǎn)成△A1DE.若M為線段A1C的中點(diǎn),則在△ADE翻轉(zhuǎn)過(guò)程中,正確的命題是
 

①M(fèi)B總是平行平面A1DE;
②|BM|是定值;
③點(diǎn)M在圓上運(yùn)動(dòng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1
n(n+1)
的前n項(xiàng)和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(1-x)n=a0+a1x+a2x2+…+anxn,若5a1+2a2=0,則a0-a1+a2-a3+…+(-1)nan=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案