【題目】已知函數(shù).
(1)若函數(shù)在區(qū)間上存在零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)若對任意的,總存在使得成立,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】
(1)根據(jù)對稱軸分析零點(diǎn)存在時(shí)對應(yīng)的的范圍;
(2)根據(jù)條件分析可得:的值域應(yīng)為的值域的子集,此時(shí)注意對與的關(guān)系進(jìn)行分類討論,由此得到滿足條件的的取值范圍.
(1)因函數(shù)的對稱軸是,
所以在區(qū)間上是減函數(shù),
因函數(shù)在區(qū)間上存在零點(diǎn),則必有,
即解得.
故所求實(shí)數(shù)的取值范圍.
(2)若對任意的,總存在使得成立,只需函數(shù)的值域?yàn)楹瘮?shù)的值域的子集.
在區(qū)間的值域?yàn)?/span>,
①當(dāng)時(shí),為常數(shù),不符合題意舍去;
②當(dāng)時(shí),在區(qū)間的值域?yàn)?/span>,
所以,解得.
③當(dāng)時(shí),在區(qū)間的值域?yàn)?/span>,
所以,無解.
綜上所述實(shí)數(shù)的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為,曲線C的參數(shù)方程為(為參數(shù),).
(1)求直線l的直角坐標(biāo)方程及曲線C的普通方程;
(2)證明:直線l和曲線C相交,并求相交弦的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P到圖形C上每一個(gè)點(diǎn)的距離的最小值稱為點(diǎn)P到圖形C的距離,那么平面內(nèi)到定圓C的距離與到定點(diǎn)的距離相等的點(diǎn)的軌跡可能是( )
A.圓B.直線C.橢圓D.雙曲線的一支
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列為等比數(shù)列,公比為為數(shù)列的前項(xiàng)和.
(1)若求
(2)若調(diào)換的順序后能構(gòu)成一個(gè)等差數(shù)列,求的所有可能值;
(3)是否存在正常數(shù)使得對任意正整數(shù)不等式總成立?若存在,求出的取值范圍;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南充高中扎實(shí)推進(jìn)陽光體育運(yùn)動(dòng),積極引導(dǎo)學(xué)生走向操場,走進(jìn)大自然,參加體育鍛煉,每天上午第三節(jié)課后全校大課間活動(dòng)時(shí)長35分鐘.現(xiàn)為了了解學(xué)生的體育鍛煉時(shí)間,采用簡單隨機(jī)抽樣法抽取了100名學(xué)生,對其平均每日參加體育鍛煉的時(shí)間(單位:分鐘)進(jìn)行調(diào)查,按平均每日體育鍛煉時(shí)間分組統(tǒng)計(jì)如下表:
分組 | ||||||
男生人數(shù) | 2 | 16 | 19 | 18 | 5 | 3 |
女生人數(shù) | 3 | 20 | 10 | 2 | 1 | 1 |
若將平均每日參加體育鍛煉的時(shí)間不低于120分鐘的學(xué)生稱為“鍛煉達(dá)人”.
(1)將頻率視為概率,估計(jì)我校7000名學(xué)生中“鍛煉達(dá)人”有多少?
(2)從這100名學(xué)生的“鍛煉達(dá)人”中按性別分層抽取5人參加某項(xiàng)體育活動(dòng).
①求男生和女生各抽取了多少人;
②若從這5人中隨機(jī)抽取2人作為組長候選人,求抽取的2人中男生和女生各1人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),解不等式
(2)若關(guān)于的方程的解集中怡好有一個(gè)元素,求的取值范圍;
(3)設(shè)若對任意函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】湖北省第二屆(荊州)園林博覽會(huì)于2019年9月28日至11月28日在荊州園博園舉辦,本屆園林博覽會(huì)以“輝煌荊楚,生態(tài)園博”為主題,展示荊州生態(tài)之美,文化之韻,吸引更多優(yōu)秀企業(yè)來荊投資,從而促進(jìn)荊州經(jīng)濟(jì)快速發(fā)展.在此博覽會(huì)期間,某公司帶來了一種智能設(shè)備供采購商洽談采購,并決定大量投放荊州市場.已知該種設(shè)備年固定研發(fā)成本為50萬元,每生產(chǎn)一臺(tái)需另投入80元,設(shè)該公司一年內(nèi)生產(chǎn)該設(shè)備萬臺(tái),且全部售完,且每萬臺(tái)的銷售收入(萬元)與年產(chǎn)量(萬臺(tái))的函數(shù)關(guān)系式近似滿足
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬臺(tái))的函數(shù)解析式.(年利潤年銷售收入總成本).
(2)當(dāng)年產(chǎn)量為多少萬臺(tái)時(shí),該公司獲得的利潤最大?并求最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個(gè)說法,其中正確的是( )
A.命題“若,則”的否命題是“若,則”
B.“”是“雙曲線的離心率大于”的充要條件
C.命題“,”的否定是“,”
D.命題“在中,若,則是銳角三角形”的逆否命題是假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于兩個(gè)定義域相同的函數(shù)、,若存在實(shí)數(shù)、使,則稱函數(shù)是由“基函數(shù)、”生成的.
(1)和生成一個(gè)偶函數(shù),求的值;
(2)若由,(且)生成,求的取值范圍;
(3)試?yán)谩盎瘮?shù),”生成一個(gè)函數(shù),使滿足下列條件:①是偶函數(shù);②有最小值1,請求出函數(shù)的解析式并進(jìn)一步研究該函數(shù)的單調(diào)性(無需證明).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com